33,911 research outputs found

    Restartable heat pipe

    Get PDF
    Inclusion in heat pipe of auxiliary working fluid which has considerably lower freezing point than main working fluid enables easy starting after main working fluid has been cooled to or below freezing point

    Thermodynamic analysis of the partially evaporating trilateral cycle

    Get PDF
    The potential of Organic Rankine Cycles (ORC) to recover low grade waste heat is well known. The high heat recovery potential is partially attributed to a good match of the temperature profiles between working fluid and waste heat stream in the evaporator. This preferable characteristic is mainly induced by the selection of an appropriate working fluid. However, because of the constant temperature evaporation of the working fluid, the heat recovery potential is restricted. In order to overcome this limitation the trilateral cycle (TLC) has been investigated. A Trilateral cycle (also called Triangular cycle) is a modified Rankine cycle. The main difference is that the working fluid is not evaporated but only heated to the saturation temperature. Compared to the ORC, the heat carrier stream can be cooled further and the thermal efficiency is lower. In this study the effect of partial evaporation of the working fluid is investigated

    Investigation of Micro Porosity Sintered wick in Vapor Chamber for Fan Less Design

    Get PDF
    Micro Porosity Sintered wick is made from metal injection molding processes, which provides a wick density with micro scale. It can keep more than 53 % working fluid inside the wick structure, and presents good pumping ability on working fluid transmission by fine infiltrated effect. Capillary pumping ability is the important factor in heat pipe design, and those general applications on wick structure are manufactured with groove type or screen type. Gravity affects capillary of these two types more than a sintered wick structure does, and mass heat transfer through vaporized working fluid determines the thermal performance of a vapor chamber. First of all, high density of porous wick supports high transmission ability of working fluid. The wick porosity is sintered in micro scale, which limits the bubble size while working fluid vaporizing on vapor section. Maximum heat transfer capacity increases dramatically as thermal resistance of wick decreases. This study on permeability design of wick structure is 0.5 - 0.7, especially permeability (R) = 0.5 can have the best performance, and its heat conductivity is 20 times to a heat pipe with diameter (Phi) = 10mm. Test data of this vapor chamber shows thermal performance increases over 33 %.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Computer program for predicting off-design performance of centrifugal compressors

    Get PDF
    Complete knowledge of compressor overall geometry and working fluid total inlet conditions is required for program's use. On given speed line, compressor performance is calculated for range of inlet velocity levels. Working fluid state conditions and flow properties are calculated using mean stream line one-dimensional analysis

    The thermoelectric working fluid: thermodynamics and transport

    Get PDF
    Thermoelectric devices are heat engines, which operate as generators or refrigerators using the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion efficiency has always been typically quite low, but much effort continues to be devoted to the design of new materials boasting improved transport properties that would make them of the electron crystal-phonon glass type of systems. On the other hand, there are comparatively few studies where a proper thermodynamic treatment of the electronic working fluid is proposed. The present article aims to contribute to bridge this gap by addressing both the thermodynamic and transport properties of the thermoelectric working fluid covering a variety of models, including interacting systems.Comment: 15 pages, 2 figure

    Heat pipes containing alkali metal working fluid

    Get PDF
    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal

    Solar heat driven water circulation and aeration system for aquaculture

    Get PDF
    The proposed design concept of water aeration and updraft circulation in aquaculture is based on the Organic Rankine Cycle (ORC) technology and uses a solar energy absorbed by a floating collector. The pressure required for the aerator is created by evaporating a working fluid and optimized for an average depth of a pond. The working pressure is defined by the maximum achievable temperature of the working fluid. The condensing heat is rejected at a certain depth with the lowest temperature and drives the convective circulation. A prototype is designed by using common materials and off-the-shelf components to ensure maintenance-free and proper capacity to fulfil the needs of an average or a small aquaculture farm: the working fluid in the working chamber evaporates increasing in volume and pumping air out of the vessel as well as the expanded working fluid in the second working chamber. The working fluid is cooled down in the condenser which is submerged into the pond and it is condensed while decreasing in volume. The new design can perform multiple cycles per day increasing the volume of pumped air. In order to make the operation of this unit possible during the night, a heat buffer with a phase changing material (PCM) is used. A parametric study of suitable working fluids and PCMs has been performed in order to select the most appropriate combination for the target applications

    Thermal flux transfer system

    Get PDF
    A thermal flux transfer system for use in maintaining the thrust chamber of an operative reaction motor at given temperatures is described. The system is characterized by an hermetically sealed chamber surrounding a thrust chamber to be cooled, with a plurality of parallel, longitudinally spaced, disk-shaped wick members formed of a metallic mesh and employed in delivering a working fluid, in its liquid state, radially toward the thrust chamber and delivering the working fluid, in its vapor state, away from the nozzle for effecting a cooling of the nozzle, in accordance with known principles of an operating heat pipe

    Potential performance improvement using a reacting gas (nitrogin tetroxide) as the working fluid in a closed Brayton cycle

    Get PDF
    The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment
    • …
    corecore