376 research outputs found

    Multi-engine machine translation by recursive sentence decomposition

    Get PDF
    In this paper, we present a novel approach to combine the outputs of multiple MT engines into a consensus translation. In contrast to previous Multi-Engine Machine Translation (MEMT) techniques, we do not rely on word alignments of output hypotheses, but prepare the input sentence for multi-engine processing. We do this by using a recursive decomposition algorithm that produces simple chunks as input to the MT engines. A consensus translation is produced by combining the best chunk translations, selected through majority voting, a trigram language model score and a confidence score assigned to each MT engine. We report statistically significant relative improvements of up to 9% BLEU score in experiments (English→Spanish) carried out on an 800-sentence test set extracted from the Penn-II Treebank

    Combining data-driven MT systems for improved sign language translation

    Get PDF
    In this paper, we investigate the feasibility of combining two data-driven machine translation (MT) systems for the translation of sign languages (SLs). We take the MT systems of two prominent data-driven research groups, the MaTrEx system developed at DCU and the Statistical Machine Translation (SMT) system developed at RWTH Aachen University, and apply their respective approaches to the task of translating Irish Sign Language and German Sign Language into English and German. In a set of experiments supported by automatic evaluation results, we show that there is a definite value to the prospective merging of MaTrEx’s Example-Based MT chunks and distortion limit increase with RWTH’s constraint reordering

    Sentence similarity-based source context modelling in PBSMT

    Get PDF
    Target phrase selection, a crucial component of the state-of-the-art phrase-based statistical machine translation (PBSMT) model, plays a key role in generating accurate translation hypotheses. Inspired by context-rich word-sense disambiguation techniques, machine translation (MT) researchers have successfully integrated various types of source language context into the PBSMT model to improve target phrase selection. Among the various types of lexical and syntactic features, lexical syntactic descriptions in the form of supertags that preserve long-range word-to-word dependencies in a sentence have proven to be effective. These rich contextual features are able to disambiguate a source phrase, on the basis of the local syntactic behaviour of that phrase. In addition to local contextual information, global contextual information such as the grammatical structure of a sentence, sentence length and n-gram word sequences could provide additional important information to enhance this phrase-sense disambiguation. In this work, we explore various sentence similarity features by measuring similarity between a source sentence to be translated with the source-side of the bilingual training sentences and integrate them directly into the PBSMT model. We performed experiments on an English-to-Chinese translation task by applying sentence-similarity features both individually, and collaboratively with supertag-based features. We evaluate the performance of our approach and report a statistically significant relative improvement of 5.25% BLEU score when adding a sentence-similarity feature together with a supertag-based feature

    Experiments on domain adaptation for patent machine translation in the PLuTO project

    Get PDF
    The PLUTO1 project (Patent Language Translations Online) aims to provide a rapid solution for the online retrieval and translation of patent documents through the integration of a number of existing state-of-the-art components provided by the project partners. The paper presents some of the experiments on patent domain adaptation of the Machine Translation (MT) systems used in the PLuTO project. The experiments use the International Patent Classification for domain adaptation and are focused on the English–French language pair

    Syntactic discriminative language model rerankers for statistical machine translation

    Get PDF
    This article describes a method that successfully exploits syntactic features for n-best translation candidate reranking using perceptrons. We motivate the utility of syntax by demonstrating the superior performance of parsers over n-gram language models in differentiating between Statistical Machine Translation output and human translations. Our approach uses discriminative language modelling to rerank the n-best translations generated by a statistical machine translation system. The performance is evaluated for Arabic-to-English translation using NIST’s MT-Eval benchmarks. While deep features extracted from parse trees do not consistently help, we show how features extracted from a shallow Part-of-Speech annotation layer outperform a competitive baseline and a state-of-the-art comparative reranking approach, leading to significant BLEU improvements on three different test sets
    • …
    corecore