1,290 research outputs found

    Knowledge-rich Image Gist Understanding Beyond Literal Meaning

    Full text link
    We investigate the problem of understanding the message (gist) conveyed by images and their captions as found, for instance, on websites or news articles. To this end, we propose a methodology to capture the meaning of image-caption pairs on the basis of large amounts of machine-readable knowledge that has previously been shown to be highly effective for text understanding. Our method identifies the connotation of objects beyond their denotation: where most approaches to image understanding focus on the denotation of objects, i.e., their literal meaning, our work addresses the identification of connotations, i.e., iconic meanings of objects, to understand the message of images. We view image understanding as the task of representing an image-caption pair on the basis of a wide-coverage vocabulary of concepts such as the one provided by Wikipedia, and cast gist detection as a concept-ranking problem with image-caption pairs as queries. To enable a thorough investigation of the problem of gist understanding, we produce a gold standard of over 300 image-caption pairs and over 8,000 gist annotations covering a wide variety of topics at different levels of abstraction. We use this dataset to experimentally benchmark the contribution of signals from heterogeneous sources, namely image and text. The best result with a Mean Average Precision (MAP) of 0.69 indicate that by combining both dimensions we are able to better understand the meaning of our image-caption pairs than when using language or vision information alone. We test the robustness of our gist detection approach when receiving automatically generated input, i.e., using automatically generated image tags or generated captions, and prove the feasibility of an end-to-end automated process

    Word Sense Disambiguation for clinical abbreviations

    Get PDF
    Abbreviations are extensively used in electronic health records (EHR) of patients as well as medical documentation, reaching 30-50% of the words in clinical narrative. There are more than 197,000 unique medical abbreviations found in the clinical text and their meanings vary depending on the context in which they are used. Since data in electronic health records could be shareable across health information systems (hospitals, primary care centers, etc.) as well as others such as insurance companies information systems, it is essential determining the correct meaning of the abbreviations to avoid misunderstandings. Clinical abbreviations have specific characteristic that do not follow any standard rules for creating them. This makes it complicated to find said abbreviations and corresponding meanings. Furthermore, there is an added difficulty to working with clinical data due to privacy reasons, since it is essential to have them in order to develop and test algorithms. Word sense disambiguation (WSD) is an essential task in natural language processing (NLP) applications such as information extraction, chatbots and summarization systems among others. WSD aims to identify the correct meaning of the ambiguous word which has more than one meaning. Disambiguating clinical abbreviations is a type of lexical sample WSD task. Previous research works adopted supervised, unsupervised and Knowledge-based (KB) approaches to disambiguate clinical abbreviations. This thesis aims to propose a classification model that apart from disambiguating well known abbreviations also disambiguates rare and unseen abbreviations using the most recent deep neural network architectures for language modeling. In clinical abbreviation disambiguation several resources and disambiguation models were encountered. Different classification approaches used to disambiguate the clinical abbreviations were investigated in this thesis. Considering that computers do not directly understand texts, different data representations were implemented to capture the meaning of the words. Since it is also necessary to measure the performance of algorithms, the evaluation measurements used are discussed. As the different solutions proposed to clinical WSD we have explored static word embeddings data representation on 13 English clinical abbreviations of the UMN data set (from University of Minnesota) by testing traditional supervised machine learning algorithms separately for each abbreviation. Moreover, we have utilized a transformer-base pretrained model that was fine-tuned as a multi-classification classifier for the whole data set (75 abbreviations of the UMN data set). The aim of implementing just one multi-class classifier is to predict rare and unseen abbreviations that are most common in clinical narrative. Additionally, other experiments were conducted for a different type of abbreviations (scientific abbreviations and acronyms) by defining a hybrid approach composed of supervised and knowledge-based approaches. Most previous works tend to build a separated classifier for each clinical abbreviation, tending to leverage different data resources to overcome the data acquisition bottleneck. However, those models were restricted to disambiguate terms that have been seen in trained data. Meanwhile, based on our results, transfer learning by fine-tuning a transformer-based model could predict rare and unseen abbreviations. A remaining challenge for future work is to improve the model to automate the disambiguation of clinical abbreviations on run-time systems by implementing self-supervised learning models.Las abreviaturas se utilizan ampliamente en las historias clínicas electrónicas de los pacientes y en mucha documentación médica, llegando a ser un 30-50% de las palabras empleadas en narrativa clínica. Existen más de 197.000 abreviaturas únicas usadas en textos clínicos siendo términos altamente ambiguos El significado de las abreviaturas varía en función del contexto en el que se utilicen. Dado que los datos de las historias clínicas electrónicas pueden compartirse entre servicios, hospitales, centros de atención primaria así como otras organizaciones como por ejemplo, las compañías de seguros es fundamental determinar el significado correcto de las abreviaturas para evitar además eventos adversos relacionados con la seguridad del paciente. Nuevas abreviaturas clínicas aparecen constantemente y tienen la característica específica de que no siguen ningún estándar para su creación. Esto hace que sea muy difícil disponer de un recurso con todas las abreviaturas y todos sus significados. A todo esto hay que añadir la dificultad para trabajar con datos clínicos por cuestiones de privacidad cuando es esencial disponer de ellos para poder desarrollar algoritmos para su tratamiento. La desambiguación del sentido de las palabras (WSD, en inglés) es una tarea esencial en tareas de procesamiento del lenguaje natural (PLN) como extracción de información, chatbots o generadores de resúmenes, entre otros. WSD tiene como objetivo identificar el significado correcto de una palabra ambigua (que tiene más de un significado). Esta tarea se ha abordado previamente utilizando tanto enfoques supervisados, no supervisados así como basados en conocimiento. Esta tesis tiene como objetivo definir un modelo de clasificación que además de desambiguar abreviaturas conocidas desambigüe también abreviaturas menos frecuentes que no han aparecido previamente en los conjuntos de entrenaminto utilizando las arquitecturas de redes neuronales profundas más recientes relacionadas ocn los modelos del lenguaje. En la desambiguación de abreviaturas clínicas se emplean diversos recursos y modelos de desambiguación. Se han investigado los diferentes enfoques de clasificación utilizados para desambiguar las abreviaturas clínicas. Dado que un ordenador no comprende directamente los textos, se han implementado diferentes representaciones de textos para capturar el significado de las palabras. Puesto que también es necesario medir el desempeño de cualquier algoritmo, se describen también las medidas de evaluación utilizadas. La mayoría de los trabajos previos se han basado en la construcción de un clasificador separado para cada abreviatura clínica. De este modo, tienden a aprovechar diferentes recursos de datos para superar el cuello de botella de la adquisición de datos. Sin embargo, estos modelos se limitaban a desambiguar con los datos para los que el sistema había sido entrenado. Se han explorado además representaciones basadas vectores de palabras (word embeddings) estáticos para 13 abreviaturas clínicas en el corpus UMN en inglés (de la University of Minnesota) utilizando algoritmos de clasificación tradicionales de aprendizaje automático supervisados (un clasificador por cada abreviatura). Se ha llevado a cabo un segundo experimento utilizando un modelo multi-clasificador sobre todo el conjunto de las 75 abreviaturas del corpus UMN basado en un modelo Transformer pre-entrenado. El objetivo ha sido implementar un clasificador multiclase para predecir también abreviaturas raras y no vistas. Se realizó un experimento adicional para siglas científicas en documentos de dominio abierto mediante la aplicación de un enfoque híbrido compuesto por enfoques supervisados y basados en el conocimiento. Así, basándonos en los resultados de esta tesis, el aprendizaje por transferencia (transfer learning) mediante el ajuste (fine-tuning) de un modelo de lenguaje preentrenado podría predecir abreviaturas raras y no vistas sin necesidad de entrenarlas previamente. Un reto pendiente para el trabajo futuro es mejorar el modelo para automatizar la desambiguación de las abreviaturas clínicas en tiempo de ejecución mediante la implementación de modelos de aprendizaje autosupervisados.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Israel González Carrasco.- Secretario: Leonardo Campillos Llanos.- Vocal: Ana María García Serran

    The strength of co-authorship in gene name disambiguation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A biomedical entity mention in articles and other free texts is often ambiguous. For example, 13% of the gene names (aliases) might refer to more than one gene. The task of Gene Symbol Disambiguation (GSD) – a special case of Word Sense Disambiguation (WSD) – is to assign a unique gene identifier for all identified gene name aliases in biology-related articles. Supervised and unsupervised machine learning WSD techniques have been applied in the biomedical field with promising results. We examine here the utilisation potential of the fact – one of the special features of biological articles – that the authors of the documents are known through graph-based semi-supervised methods for the GSD task.</p> <p>Results</p> <p>Our key hypothesis is that a biologist refers to each particular gene by a fixed gene alias and this holds for the co-authors as well. To make use of the co-authorship information we decided to build the inverse co-author graph on MedLine abstracts. The nodes of the inverse co-author graph are articles and there is an edge between two nodes if and only if the two articles have a mutual author. We introduce here two methods using distances (based on the graph) of abstracts for the GSD task. We found that a disambiguation decision can be made in 85% of cases with an extremely high (99.5%) precision rate just by using information obtained from the inverse co-author graph. We incorporated the co-authorship information into two GSD systems in order to attain full coverage and in experiments our procedure achieved precision of 94.3%, 98.85%, 96.05% and 99.63% on the human, mouse, fly and yeast GSD evaluation sets, respectively.</p> <p>Conclusion</p> <p>Based on the promising results obtained so far we suggest that the co-authorship information and the circumstances of the articles' release (like the title of the journal, the year of publication) can be a crucial building block of any sophisticated similarity measure among biological articles and hence the methods introduced here should be useful for other biomedical natural language processing tasks (like organism or target disease detection) as well.</p

    Investigations into the value of labeled and unlabeled data in biomedical entity recognition and word sense disambiguation

    Get PDF
    Human annotations, especially in highly technical domains, are expensive and time consuming togather, and can also be erroneous. As a result, we never have sufficiently accurate data to train andevaluate supervised methods. In this thesis, we address this problem by taking a semi-supervised approach to biomedical namedentity recognition (NER), and by proposing an inventory-independent evaluation framework for supervised and unsupervised word sense disambiguation. Our contributions are as follows: We introduce a novel graph-based semi-supervised approach to named entity recognition(NER) and exploit pre-trained contextualized word embeddings in several biomedical NER tasks. We propose a new evaluation framework for word sense disambiguation that permits a fair comparison between supervised methods trained on different sense inventories as well as unsupervised methods without a fixed sense inventory
    • …
    corecore