3,339 research outputs found

    A Unified multilingual semantic representation of concepts

    Get PDF
    Semantic representation lies at the core of several applications in Natural Language Processing. However, most existing semantic representation techniques cannot be used effectively for the representation of individual word senses. We put forward a novel multilingual concept representation, called MUFFIN , which not only enables accurate representation of word senses in different languages, but also provides multiple advantages over existing approaches. MUFFIN represents a given concept in a unified semantic space irrespective of the language of interest, enabling cross-lingual comparison of different concepts. We evaluate our approach in two different evaluation benchmarks, semantic similarity and Word Sense Disambiguation, reporting state-of-the-art performance on several standard datasets

    WikiM: Metapaths based Wikification of Scientific Abstracts

    Full text link
    In order to disseminate the exponential extent of knowledge being produced in the form of scientific publications, it would be best to design mechanisms that connect it with already existing rich repository of concepts -- the Wikipedia. Not only does it make scientific reading simple and easy (by connecting the involved concepts used in the scientific articles to their Wikipedia explanations) but also improves the overall quality of the article. In this paper, we present a novel metapath based method, WikiM, to efficiently wikify scientific abstracts -- a topic that has been rarely investigated in the literature. One of the prime motivations for this work comes from the observation that, wikified abstracts of scientific documents help a reader to decide better, in comparison to the plain abstracts, whether (s)he would be interested to read the full article. We perform mention extraction mostly through traditional tf-idf measures coupled with a set of smart filters. The entity linking heavily leverages on the rich citation and author publication networks. Our observation is that various metapaths defined over these networks can significantly enhance the overall performance of the system. For mention extraction and entity linking, we outperform most of the competing state-of-the-art techniques by a large margin arriving at precision values of 72.42% and 73.8% respectively over a dataset from the ACL Anthology Network. In order to establish the robustness of our scheme, we wikify three other datasets and get precision values of 63.41%-94.03% and 67.67%-73.29% respectively for the mention extraction and the entity linking phase

    Neural Collective Entity Linking

    Full text link
    Entity Linking aims to link entity mentions in texts to knowledge bases, and neural models have achieved recent success in this task. However, most existing methods rely on local contexts to resolve entities independently, which may usually fail due to the data sparsity of local information. To address this issue, we propose a novel neural model for collective entity linking, named as NCEL. NCEL applies Graph Convolutional Network to integrate both local contextual features and global coherence information for entity linking. To improve the computation efficiency, we approximately perform graph convolution on a subgraph of adjacent entity mentions instead of those in the entire text. We further introduce an attention scheme to improve the robustness of NCEL to data noise and train the model on Wikipedia hyperlinks to avoid overfitting and domain bias. In experiments, we evaluate NCEL on five publicly available datasets to verify the linking performance as well as generalization ability. We also conduct an extensive analysis of time complexity, the impact of key modules, and qualitative results, which demonstrate the effectiveness and efficiency of our proposed method.Comment: 12 pages, 3 figures, COLING201

    Pair-Linking for Collective Entity Disambiguation: Two Could Be Better Than All

    Full text link
    Collective entity disambiguation aims to jointly resolve multiple mentions by linking them to their associated entities in a knowledge base. Previous works are primarily based on the underlying assumption that entities within the same document are highly related. However, the extend to which these mentioned entities are actually connected in reality is rarely studied and therefore raises interesting research questions. For the first time, we show that the semantic relationships between the mentioned entities are in fact less dense than expected. This could be attributed to several reasons such as noise, data sparsity and knowledge base incompleteness. As a remedy, we introduce MINTREE, a new tree-based objective for the entity disambiguation problem. The key intuition behind MINTREE is the concept of coherence relaxation which utilizes the weight of a minimum spanning tree to measure the coherence between entities. Based on this new objective, we design a novel entity disambiguation algorithms which we call Pair-Linking. Instead of considering all the given mentions, Pair-Linking iteratively selects a pair with the highest confidence at each step for decision making. Via extensive experiments, we show that our approach is not only more accurate but also surprisingly faster than many state-of-the-art collective linking algorithms

    An effective, low-cost measure of semantic relatedness obtained from Wikipedia links

    Get PDF
    This paper describes a new technique for obtaining measures of semantic relatedness. Like other recent approaches, it uses Wikipedia to provide structured world knowledge about the terms of interest. Out approach is unique in that it does so using the hyperlink structure of Wikipedia rather than its category hierarchy or textual content. Evaluation with manually defined measures of semantic relatedness reveals this to be an effective compromise between the ease of computation of the former approach and the accuracy of the latter
    corecore