3,178 research outputs found

    Exploring IoT in Smart Cities: Practices, Challenges and Way Forward

    Full text link
    The rise of Internet of things (IoT) technology has revolutionized urban living, offering immense potential for smart cities in which smart home, smart infrastructure, and smart industry are essential aspects that contribute to the development of intelligent urban ecosystems. The integration of smart home technology raises concerns regarding data privacy and security, while smart infrastructure implementation demands robust networking and interoperability solutions. Simultaneously, deploying IoT in industrial settings faces challenges related to scalability, standardization, and data management. This research paper offers a systematic literature review of published research in the field of IoT in smart cities including 55 relevant primary studies that have been published in reputable journals and conferences. This extensive literature review explores and evaluates various aspects of smart home, smart infrastructure, and smart industry and the challenges like security and privacy, smart sensors, interoperability and standardization. We provide a unified perspective, as we seek to enhance the efficiency and effectiveness of smart cities while overcoming security concerns. It then explores their potential for collective integration and impact on the development of smart cities. Furthermore, this study addresses the challenges associated with each component individually and explores their combined impact on enhancing urban efficiency and sustainability. Through a comprehensive analysis of security concerns, this research successfully integrates these IoT components in a unified approach, presenting a holistic framework for building smart cities of the future. Integrating smart home, smart infrastructure, and smart industry, this research highlights the significance of an integrated approach in developing smart cities

    Home Energy Management System and Internet of Things: Current Trends and Way Forward

    Get PDF
    Managing energy in the residential areas has becoming essential with the aim of cost saving, to realize a practical approach of home energy management system (HEMS) in the area of heterogeneous Internet-of-Thing (IoT) devices. The devices are currently developed in different standards and protocols. Integration of these devices in the same HEMS is an issue, and many systems were proposed to integrate them efficiently. However, implementing new systems will incur high capital cost. This work aims to conduct a review on recent HEMS studies towards achieving the same objectives: energy efficiency, energy saving, reduce energy cost, reduce peak to average ratio, and maximizing user's comfort. Potential research directions and discussion on current issues and challenges in HEMS implementation are also provided

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Blockchain-Enabled On-Path Caching for Efficient and Reliable Content Delivery in Information-Centric Networks

    Get PDF
    As the demand for online content continues to grow, traditional Content Distribution Networks (CDNs) are facing significant challenges in terms of scalability and performance. Information-Centric Networking (ICN) is a promising new approach to content delivery that aims to address these issues by placing content at the center of the network architecture. One of the key features of ICNs is on-path caching, which allows content to be cached at intermediate routers along the path from the source to the destination. On-path caching in ICNs still faces some challenges, such as the scalability of the cache and the management of cache consistency. To address these challenges, this paper proposes several alternative caching schemes that can be integrated into ICNs using blockchain technology. These schemes include Bloom filters, content-based routing, and hybrid caching, which combine the advantages of off-path and on-path cachings. The proposed blockchain-enabled on-path caching mechanism ensures the integrity and authenticity of cached content, and smart contracts automate the caching process and incentivize caching nodes. To evaluate the performance of these caching alternatives, the authors conduct experiments using real-world datasets. The results show that on-path caching can significantly reduce network congestion and improve content delivery efficiency. The Bloom filter caching scheme achieved a cache hit rate of over 90% while reducing the cache size by up to 80% compared to traditional caching. The content-based routing scheme also achieved high cache hit rates while maintaining low latency

    Adaptive Security Framework in Internet of Things (IoT) for Providing Mobile Cloud Computing

    Get PDF
    Internet of Things (IoT) has immense potential to change many of our daily activities, routines and behaviors. The pervasive nature of the information sources means that a great amount of data pertaining to possibly every aspect of human activity, both public and private, will be produced, transmitted, collected, stored and processed. Consequently, integrity and confidentiality of transmitted data as well as the authentication of (and trust in) the services that offer the data is crucial. Hence, security is a critical functionality for the IoT. Enormous growth of mobile devices capability, critical automation of industry fields and the widespread of wireless communication cast need for seamless provision of mobile web services in the Internet of Things (IoT) environment. These are enriched by mobile cloud computing. However, it poses a challenge for its reliability, data authentication, power consumption and security issues. There is also a need for auto self-operated sensors for geo-sensing, agriculture, automatic cars, factories, roads, medicals application and more. IoT is still highly not reliable in points of integration between how its devices are connected, that is, there is poor utilization of the existing IP security protocols. In this chapter, we propose a deep penetration method for the IoT connected set of devices, along with the mobile cloud. An architecture and testing framework for providing mobile cloud computing in the IoT that is based on the object security, power utilization, latency measures and packet loss rate is explained. Our solution is based on the use of existing security protocols between clients and the mobile hosts as well as a key management protocol between the individual mobile hosts implementing an out-of-band key exchange that is simple in practice, flexible and secure. We study the performance of this approach by evaluating a prototype implementation of our security framework. This chapter, in a preliminary manner, discusses the threats, hacks, misguided packets and over read sensor message. These packets are then translated by hardware and pushed through the web for later-on action or support. Our testing of a set of sensor-triggered scenario and setup clearly indicates the security threats from wireless connected small LAN environments and the overestimated sensor messages resulting from the initial set of the sensor readings, while we emphasize more on the security level of the web services serving the IoT-connected device. Also, we add a remark on how mobile web services and their enabling devices are by far vulnerable to a 4G hack over the utilization of power pack and a serious battery use power draining issues
    corecore