135,289 research outputs found

    Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors.

    Get PDF
    The pluripotent nature of human embryonic stem cells (hESCs) makes them convenient for deriving therapeutically relevant cells. Here we show using Wnt reporter hESC lines that the cells are heterogeneous with respect to endogenous Wnt signalling activity. Moreover, the level of Wnt signalling activity in individual cells correlates with differences in clonogenic potential and lineage-specific differentiation propensity. The addition of Wnt protein or, conversely, a small-molecule Wnt inhibitor (IWP2) reduces heterogeneity, allowing stable expansion of Wnt(high) or Wnt(low) hESC populations, respectively. On differentiation, the Wnt(high) hESCs predominantly form endodermal and cardiac cells, whereas the Wnt(low) hESCs generate primarily neuroectodermal cells. Thus, heterogeneity with respect to endogenous Wnt signalling underlies much of the inefficiency in directing hESCs towards specific cell types. The relatively uniform differentiation potential of the Wnt(high) and Wnt(low) hESCs leads to faster and more efficient derivation of targeted cell types from these populations

    Structure-based Discovery of Novel Small Molecule Wnt Signaling Inhibitors by Targeting the Cysteine-rich Domain of Frizzled.

    Get PDF
    Frizzled is the earliest discovered glycosylated Wnt protein receptor and is critical for the initiation of Wnt signaling. Antagonizing Frizzled is effective in inhibiting the growth of multiple tumor types. The extracellular N terminus of Frizzled contains a conserved cysteine-rich domain that directly interacts with Wnt ligands. Structure-based virtual screening and cell-based assays were used to identify five small molecules that can inhibit canonical Wnt signaling and have low IC50 values in the micromolar range. NMR experiments confirmed that these compounds specifically bind to the Wnt binding site on the Frizzled8 cysteine-rich domain with submicromolar dissociation constants. Our study confirms the feasibility of targeting the Frizzled cysteine-rich domain as an effective way of regulating canonical Wnt signaling. These small molecules can be further optimized into more potent therapeutic agents for regulating abnormal Wnt signaling by targeting Frizzled

    Notch signaling augments the canonical Wnt pathway to specify the size of the otic placode

    Get PDF
    The inner ear derives from a patch of ectoderm defined by expression of the transcription factor Pax2. We recently showed that this Pax2^+ ectoderm gives rise not only to the otic placode but also to the surrounding cranial epidermis, and that Wnt signaling mediates this placode-epidermis fate decision. We now present evidence for reciprocal interactions between the Wnt and Notch signaling pathways during inner ear induction. Activation of Notch1 in Pax2+ ectoderm expands the placodal epithelium at the expense of cranial epidermis, whereas loss of Notch1 leads to a reduction in the size of the otic placode. We show that Wnt signaling positively regulates Notch pathway genes such as Jag1, Notch1 and Hes1, and we have used transgenic Wnt reporter mice to show that Notch signaling can modulate the canonical Wnt pathway. Gain- and loss-of-function mutations in the Notch and Wnt pathways reveal that some aspects of otic placode development - such as Pax8 expression and the morphological thickening of the placode - can be regulated independently by either Notch or Wnt signals. Our results suggest that Wnt signaling specifies the size of the otic placode in two ways, by directly upregulating a subset of otic genes, and by positively regulating components of the Notch signaling pathway, which then act to augment Wnt signaling

    The C. Elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway

    Get PDF
    Inhibitors of Wnt signaling promote normal development and prevent cancer by restraining when and where the Wnt pathway is activated. ROR proteins, a class of Wnt-binding receptor tyrosine kinases, inhibit Wnt signaling by an unknown mechanism. To clarify how RORs inhibit the Wnt pathway, we examined the relationship between Wnts and the sole C. elegans ROR homolog, cam-1, during C. elegans vulval development, a Wnt-regulated process. We found that loss and overexpression of cam-1 causes reciprocal defects in Wnt-mediated cell-fate specification. Our molecular and genetic analyses revealed that the CAM-1 extracellular domain (ECD) is sufficient to non-autonomously antagonize multiple Wnts, suggesting that the CAM-1/ROR ECD sequesters Wnts. A sequestration model is supported by our findings that the CAM-1 ECD binds to several Wnts in vitro. These results demonstrate how ROR proteins help to refine the spatial pattern of Wnt activity in a complex multicellular environment

    Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human

    No full text
    The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well

    Frizzled-8 integrates Wnt-11 and transforming growth factor-β signaling in prostate cancer

    Get PDF
    Wnt-11 promotes cancer cell migration and invasion independently of β-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD8 is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-β signals to promote EMT. FZD8 mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD8 in cancer, correlating with Wnt-11. FZD8 co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD8 silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-β/Smad-dependent signaling. Mechanistically, FZD8 forms a TGF-β-regulated complex with TGF-β receptors that is mediated by the extracellular domains of FZD8 and TGFBR1. Targeting FZD8 may therefore inhibit aberrant activation of both Wnt and TGF-β signals in prostate cancer

    Persistent Wnt/β-catenin signaling determines dorsalization of the postnatal subventricular zone and neural Stem cell specification into oligodendrocytes and glutamatergic neurons

    Get PDF
    In the postnatal and adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the main source of neural stem cells (NSCs) that generate olfactory neurons and oligodendrocytes (OLs), the myelinating cells of the CNS. Here, we provide evidence of a primary role for canonical Wnt/β-catenin signaling in regulating NSC fate along neuronal and oligodendroglial lineages in the postnatal SVZ. Our findings demonstrate that glutamatergic neuronal precursors (NPs) and oligodendrocyte precursors (OPs) are derived strictly from the dorsal SVZ (dSVZ) microdomain under the control of Wnt/β-catenin, whereas GABAergic NPs are derived mainly from the lateral SVZ (lSVZ) microdomain independent of Wnt/β-catenin. Transcript analysis of microdissected SVZ microdomains revealed that canonical Wnt/β-catenin signaling was more pronounced in the dSVZ microdomain. This was confirmed using the β-catenin-activated Wnt-reporter mouse and by pharmacological stimulation of Wnt/β-catenin by infusion of the specific glycogen synthase kinase 3β inhibitor, AR-A014418, which profoundly increased the generation of cycling cells. In vivo genetic/pharmacological stimulation or inhibition of Wnt/β-catenin, respectively, increased and decreased the differentiation of dSVZ-NSCs into glutamatergic NPs, and had a converse effect on GABAergic NPs. Activation of Wnt/β-catenin dramatically stimulated the generation of OPs, but its inhibition had no effect, indicating other factors act in concert with Wnt/β-catenin to fine tune oligodendrogliogenesis in the postnatal dSVZ. These results demonstrate a role for Wnt/β-catenin signaling within the dorsal microdomain of the postnatal SVZ, in regulating the genesis of glutamatergic neurons and OLs
    corecore