4 research outputs found

    Witness and Counterexample Automata for ACTL

    Full text link
    Abstract. Witnesses and counterexamples produced by model checkers provide a very useful source of diagnostic information. They are usually returned in the form of a single computation path along the model of the system. However, a single computation path is not enough to explain all reasons of a validity or a failure. Our work in this area is motivated by the application of action-based model checking algorithms to the test case generation for models formally specified with a CCS-like process algebra. There, only linear and finite witnesses and counterexamples are useful and for the given formula and model an efficient representation of the set of witnesses (counterexamples) explaining all reasons of validity (failure) is needed. This paper identifies a fragment of action computation tree logic (ACTL) that can be handled in this way. Moreover, a suitable form of witnesses and counterexamples is proposed and witness and counterex-ample automata are introduced, which are finite automata recognizing them. An algorithm for generating such automata is given.

    Rich Counter-Examples for Temporal-Epistemic Logic Model Checking

    Full text link
    Model checking verifies that a model of a system satisfies a given property, and otherwise produces a counter-example explaining the violation. The verified properties are formally expressed in temporal logics. Some temporal logics, such as CTL, are branching: they allow to express facts about the whole computation tree of the model, rather than on each single linear computation. This branching aspect is even more critical when dealing with multi-modal logics, i.e. logics expressing facts about systems with several transition relations. A prominent example is CTLK, a logic that reasons about temporal and epistemic properties of multi-agent systems. In general, model checkers produce linear counter-examples for failed properties, composed of a single computation path of the model. But some branching properties are only poorly and partially explained by a linear counter-example. This paper proposes richer counter-example structures called tree-like annotated counter-examples (TLACEs), for properties in Action-Restricted CTL (ARCTL), an extension of CTL quantifying paths restricted in terms of actions labeling transitions of the model. These counter-examples have a branching structure that supports more complete description of property violations. Elements of these counter-examples are annotated with parts of the property to give a better understanding of their structure. Visualization and browsing of these richer counter-examples become a critical issue, as the number of branches and states can grow exponentially for deeply-nested properties. This paper formally defines the structure of TLACEs, characterizes adequate counter-examples w.r.t. models and failed properties, and gives a generation algorithm for ARCTL properties. It also illustrates the approach with examples in CTLK, using a reduction of CTLK to ARCTL. The proposed approach has been implemented, first by extending the NuSMV model checker to generate and export branching counter-examples, secondly by providing an interactive graphical interface to visualize and browse them.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Witness and Counterexample Automata for ACTL

    No full text
    Witnesses and counterexamples produced by model checkers provide a very useful source of diagnostic information. They are usually returned in the form of a single computation path along the model of the system. However, a single computation path is not enough to explain all reasons of a validity or a failure. Our work in this area is motivated by the application of action-based model checking algorithms to the test case generation for models formally specified with a CCS-like process algebra
    corecore