546 research outputs found

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Dual-band substrate integrated waveguide textile antenna with integrated solar harvester

    Get PDF
    A dual-band wearable textile antenna based on substrate integrated waveguide technology is presented for operation in the [2.4-2.4835]-GHz Industrial, Scientific and Medical band and the [2.5-2.69]-GHz 4G LTE band 7. The antenna features an integrated flexible solar harvesting system, consisting of a flexible solar cell, a power management system, and energy storage. All these components are judiciously positioned on the antenna platform in order not to affect its radiation performance. The measured reflection coefficients and radiation characteristics after bending and deploying the antenna on a human body prove that the antenna is well suited for on-body use. A measured on-body antenna gain and radiation efficiency of 5.0 dBi and 89% are realized. Measurements in a real-life situation have demonstrated the ability to scavenge a maximum of 53 mW by means of a single integrated flexible solar cell

    The design and evaluation of discrete wearable medical devices for vital signs monitoring

    Get PDF
    The observation, recording and appraisal of an individual’s vital signs, namely temperature, heart rate, blood pressure, respiratory rate and blood oxygen saturation (SpO2), are key components in the assessment of their health and wellbeing. Measurements provide valuable diagnostic data, facilitating clinical diagnosis, management and monitoring. Respiratory rate sensing is perhaps the most under-utilised of all the vital signs, being routinely assessed by observation or estimated algorithmically from respiratory-induced beat-to-beat variation in heart rate. Moreover there is an unmet need for wearable devices that can measure all or most of the vital signs. This project therefore aims to a) develop a device that can measure respiratory rate and b) develop a wearable device that can measure all or most of the vital signs. An accelerometer-based clavicular respiratory motion sensor was developed and compared with a similar thoracic motion sensor and reference using exhalatory flow. Pilot study results established that the clavicle sensor accurately tracked the reference in monitoring respiratory rate and outperformed the thoracic device. An Ear-worn Patient Monitoring System (EPMS) was also developed, providing a discrete telemonitoring device capable of rapidly measuring tympanic temperature, heart rate, SpO2 and activity level. The results of a comparative pilot study against reference instruments revealed that heart rate matched the reference for accuracy, while temperature under read (< 1°C) and SpO2 was inconsistent with poor correlation. In conclusion, both of the prototype devices require further development. The respiratory sensor would benefit from product engineering and larger scale testing to fully exploit the technology, but could find use in both hospital and community-based The design and evaluation of discrete wearable medical devices for vital signs monitoring DG Pitts ii Cranfield University monitoring. The EPMS has potential for clinical and community use, having demonstrated its capability of rapidly capturing and wirelessly transmitting vital signs readings. Further development is nevertheless required to improve the thermometer probe and resolve outstanding issues with SpO2 readings

    Wireless Power Hotspot that Charges All of Your Devices

    Get PDF
    Each year, consumers carry an increasing number of gadgets on their person: mobile phones, tablets, smartwatches, etc. As a result, users must remember to recharge each device, every day. Wireless charging promises to free users from this burden, allowing devices to remain permanently unplugged. Today's wireless charging, however, is either limited to a single device, or is highly cumbersome, requiring the user to remove all of her wearable and handheld gadgets and place them on a charging pad. This paper introduces MultiSpot, a new wireless charging technology that can charge multiple devices, even as the user is wearing them or carrying them in her pocket. A MultiSpot charger acts as an access point for wireless power. When a user enters the vicinity of the MultiSpot charger, all of her gadgets start to charge automatically. We have prototyped MultiSpot and evaluated it using off-the-shelf mobile phones, smartwatches, and tablets. Our results show that MultiSpot can charge 6 devices at distances of up to 50cm.National Science Foundation (U.S.

    A wearable wireless sensor network for indoor smart environment monitoring in safety applications

    Get PDF
    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers

    Sensor Development for Physiological and Environmental Monitoring

    Get PDF
    abstract: The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value for sensor technologies are increased when the sensors are developed into innovative measuring system for application uses in the Aerospace, Defense, and Healthcare industries. While sensors are not new, their increased performance, size reduction, and decrease in cost has opened the door for innovative sensor combination for portable devices that could be worn or easily moved around. With this opportunity for further development of sensor use through concept engineering development, three concept projects for possible innovative portable devices was undertaken in this research. One project was the development of a pulse oximeter devise with fingerprint recognition. The second project was prototyping a portable Bluetooth strain gage monitoring system. The third project involved sensors being incorporated onto flexible printed circuit board (PCB) for improved comfort of wearable devices. All these systems were successfully tested in lab.Dissertation/ThesisMasters Thesis Engineering 201

    Energy Neutral Activity Monitoring:Wearables Powered by Smart Inductive Charging Surfaces

    Get PDF
    Wearable technologies play a key role in the shift of traditional healthcare services towards eHealth and self-monitoring. Maintenance overheads, such as regular battery recharging, impose a limitation on the applicability of such technologies in some groups of the population. In this paper, we propose an activity monitoring system that is based on wearable sensors that are powered by textile inductive charging surfaces. By strategically positioning these surfaces on pieces of furniture that are routinely used, the system passively charges the wearable sensor whilst the user is present. As a proof-of-concept example, experiments conducted on a prototype implementation of the system suggest that 36 minutes of daily desktop computer usage are on average sufficient to maintain a wearable sensor energy neutral

    Low-profile antenna systems for the Next-Generation Internet of Things applications

    Get PDF
    • …
    corecore