57,307 research outputs found

    Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network

    Full text link
    In wireless mesh networks such as WLAN (IEEE 802.11s) or WMAN (IEEE 802.11), each node should help to relay packets of neighboring nodes toward gateway using multi-hop routing mechanisms. Wireless mesh networks usually intensively deploy mesh nodes to deal with the problem of dead spot communication. However, the higher density of nodes deployed, the higher radio interference occurred. This causes significant degradation of system performance. In this paper, we first convert network problems into geometry problems in graph theory, and then solve the interference problem by geometric algorithms. We first define line intersection in a graph to reflect radio interference problem in a wireless mesh network. We then use plan sweep algorithm to find intersection lines, if any; employ Voronoi diagram algorithm to delimit the regions among nodes; use Delaunay Triangulation algorithm to reconstruct the graph in order to minimize the interference among nodes. Finally, we use standard deviation to prune off those longer links (higher interference links) to have a further enhancement. The proposed hybrid solution is proved to be able to significantly reduce interference in a wireless mesh network in O(n log n) time complexity.Comment: 24 Pages, JGraph-Hoc Journal 201

    Performance Analysis of Optimal Path Finding Algorithm In Wireless Mesh Network

    Get PDF
    Wireless Mesh Network has emerged as a key technology for next generation wireless networking because of its advantage over other wireless technologies. Wireless Mesh Network has been widely accepted as a replacement for areas of ad-hoc network or MANET. Multi hop wireless mesh technology has become a new paradigm for communication. Wireless Mesh Network is an attractive solution for providing last-mile connectivity. ...

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges

    Common security issues and challenges in wireless sensor networks and IEEE 802.11 wireless mesh networks

    Get PDF
    Both Wireless Mesh Network (WMN) and Wireless Sensor Network (WSN) are multi-hop wireless networks. WMN is an emerging community based integrated broadband wireless network which ensures high bandwidth ubiquitous internet provision to users, while, WSN is application specific and ensures large scale real-time data processing in complex environment. Both these wireless networks have some common vulnerable features which may increase the chances of different sorts of security attacks. Wireless sensor nodes have computation, memory and power limitations, which do not allow for implementation of complex security mechanism. In this paper, we discuss the common limitations and vulnerable features of WMN and WSN, along with the associated security threats and possible countermeasures. We also propose security mechanisms keeping in view the architecture and limitations of both. This article will serve as a baseline guide for the new researchers who are concern with the security aspects of WMN and WSN

    Wireless Mesh Networks for Small Satellites Subsystems

    Get PDF
    Wireless mesh networks are a network topology where all the nodes of a system are able to communicate with every other node in the network. This enables an adaptable network that is scalable and has the capability to self-repair and self-configure. The Modular Rapidly Manufactured Small Sat (MRMSS) Project is a small satellite project where we are developing a modular CubeSat architecture. One of the goals of the project is to develop a system that is quick and simple to integrate with a minimal amount of wiring involved. Wireless mesh networks are well suited for this configuration because of the self- configuring and self-repairing aspects of the network. This enables a satellite developer to add subsystem nodes to the network without the need for much hardware re-design. This paper will detail the background of wireless mesh networks, the advantages and limitations of using wireless mesh networks for space applications, and the technical progress of the wireless mesh network development of the MRMSS project

    Passive security threats and consequences in IEEE 802.11 wireless mesh networks

    Get PDF
    The Wireless Mesh Network (WMN) is ubiquitous emerging broadband wireless network. However, the open wireless medium, multi-hop multi-radio architecture and ad-hoc connectivity amongst end-users are such characteristics which increases the vulnerabilities of WMN towards many passive and active attacks. A secure network ensures the confidentiality, integrity and availability of wireless network. Integrity and availability is compromised by active attacks, while the confidentiality of end-users traffic is compromised by passive attacks. Passive attacks are silent in nature and do not harm the network traffic or normal network operations, therefore very difficult to detect. However, passive attacks lay down a foundation for later launching an active attack. In this article, we discuss the vulnerable features and possible passive threats in WMN along with current security mechanisms as well as future research directions. This article will serve as a baseline guide for the passive security threats and related issues in WMNs

    Multi-population genetic algorithms with immigrants scheme for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2010.The static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile ad hoc network (MANET), wireless mesh network, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, that is, the network topology changes over time due to energy conservation or node mobility. Therefore, the SP problem turns out to be a dynamic optimization problem in mobile wireless networks. In this paper, we propose to use multi-population GAs with immigrants scheme to solve the dynamic SP problem in MANETs which is the representative of new generation wireless networks. The experimental results show that the proposed GAs can quickly adapt to the environmental changes (i.e., the network topology change) and produce good solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council(EPSRC) of UK under Grant EP/E060722/1

    Automatic application object migration in sensor networks

    Get PDF
    Object migration in wireless sensor networks has the potential to reduce energy consumption for a wireless sensor network mesh. Automated migration reduces the need for the programmer to perform manual static analysis to find an efficient layout solution. Instead, the system can self-optimise and adjust to changing conditions. This paper describes an automated, transparent object migration system for wireless sensor networks, implemented on a micro Java virtual machine. The migration system moves objects at runtime around the sensor mesh to reduce communication overheads. The movement of objects is transparent to the application developer. Automated transparent object migration is a core component of Hydra, a distributed operating system for wireless sensor networks that is currently under development. Performance of the system under a complex performance test scenario using a real-world dataset of seismic events is described. The results show that under both simple and complex conditions the migration technique can result in lower data traffic and consequently lower overall energy cost
    corecore