56 research outputs found

    The Impact of Network Latency on the Synchronization of Real-World IEEE 1588-2008 Devices Using 1588 and non-1588 Aware Switches

    Get PDF
    Precision Time Protocol (PTP) is a high precision time synchronization protocol designed to operate over a local area network. PTP, often referred to as 1588, is defined by the IEEE Standard 1588(TM)-2008. The protocol theoretically allows synchronization at the nanosecond level. New devices with support for 1588 are emerging into the market, but there have been few studies on real 1588 devices. Our research was broken into two parts: Phase 1 and Phase 2. Phase 1 studied performance of the protocol in an environment where two 1588 devices are connected via a network in which impairments that are typically observed in real networks are introduced and non-1588 devices are present. Measuring the Pulse-Per-Second (PPS) clock outputs of the 1588 boards, we were able to calculate the standard deviation and the mean synchronization error of the 1588 clocks. When we applied latency via network emulators and traffic generators between the 1588 connections, we found that 1588 boards were unable to maintain high accuracy time synchronization under variable and asymmetric latency. The results provide valuable insight into the real-world accuracy and robustness because it is rare that a network will contain neither variable or asymmetric latency. In Phase 2 we studied the impact of latency and high-bandwidth background traffic on 1588 clock synchronization when connected through 1588 and non-1588 aware switches. We found that 1588 aware switches provide higher precision time synchronization in small networks; but in large networks where congestion is present 1588 aware switches were unable to maintain high accuracy clock synchronization without prioritization. Our results also show that having cut-through Enterprise Ethernet switches connected to high congestion endpoints with priorities enabled is adequate for maintaining sub-microsecond synchronization performance

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Resilient Infrastructure and Building Security

    Get PDF

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Key Agreement with Physical Unclonable Functions and Biometric Identifiers

    Get PDF
    This thesis addresses security and privacy problems for digital devices and biometrics, where a secret key is generated for authentication, identification, or secure computations. A physical unclonable function (PUF) is a promising solution for local security in digital devices. A low-complexity transform-coding algorithm is developed to make the information-theoretic analysis tractable and motivate a noisy (hidden) PUF source model. The optimal trade-offs between the secret-key, privacy-leakage, and storage rates for multiple measurements of hidden PUFs are characterized. The first optimal and low-complexity code constructions are proposed. Polar codes are designed to achieve the best known rate tuples. The gains from cost-constrained controllable PUF measurements are illustrated to motivate extensions

    Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Full text link

    Audio-coupled video content understanding of unconstrained video sequences

    Get PDF
    Unconstrained video understanding is a difficult task. The main aim of this thesis is to recognise the nature of objects, activities and environment in a given video clip using both audio and video information. Traditionally, audio and video information has not been applied together for solving such complex task, and for the first time we propose, develop, implement and test a new framework of multi-modal (audio and video) data analysis for context understanding and labelling of unconstrained videos. The framework relies on feature selection techniques and introduces a novel algorithm (PCFS) that is faster than the well-established SFFS algorithm. We use the framework for studying the benefits of combining audio and video information in a number of different problems. We begin by developing two independent content recognition modules. The first one is based on image sequence analysis alone, and uses a range of colour, shape, texture and statistical features from image regions with a trained classifier to recognise the identity of objects, activities and environment present. The second module uses audio information only, and recognises activities and environment. Both of these approaches are preceded by detailed pre-processing to ensure that correct video segments containing both audio and video content are present, and that the developed system can be made robust to changes in camera movement, illumination, random object behaviour etc. For both audio and video analysis, we use a hierarchical approach of multi-stage classification such that difficult classification tasks can be decomposed into simpler and smaller tasks. When combining both modalities, we compare fusion techniques at different levels of integration and propose a novel algorithm that combines advantages of both feature and decision-level fusion. The analysis is evaluated on a large amount of test data comprising unconstrained videos collected for this work. We finally, propose a decision correction algorithm which shows that further steps towards combining multi-modal classification information effectively with semantic knowledge generates the best possible results

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Unmasking the imposters: towards improving the generalisation of deep learning methods for face presentation attack detection.

    Get PDF
    Identity theft has had a detrimental impact on the reliability of face recognition, which has been extensively employed in security applications. The most prevalent are presentation attacks. By using a photo, video, or mask of an authorized user, attackers can bypass face recognition systems. Fake presentation attacks are detected by the camera sensors of face recognition systems using face presentation attack detection. Presentation attacks can be detected using convolutional neural networks, commonly used in computer vision applications. An in-depth analysis of current deep learning methods is used in this research to examine various aspects of detecting face presentation attacks. A number of new techniques are implemented and evaluated in this study, including pre-trained models, manual feature extraction, and data aggregation. The thesis explores the effectiveness of various machine learning and deep learning models in improving detection performance by using publicly available datasets with different dataset partitions than those specified in the official dataset protocol. Furthermore, the research investigates how deep models and data aggregation can be used to detect face presentation attacks, as well as a novel approach that combines manual features with deep features in order to improve detection accuracy. Moreover, task-specific features are also extracted using pre-trained deep models to enhance the performance of detection and generalisation further. This problem is motivated by the need to achieve generalization against new and rapidly evolving attack variants. It is possible to extract identifiable features from presentation attack variants in order to detect them. However, new methods are needed to deal with emerging attacks and improve the generalization capability. This thesis examines the necessary measures to detect face presentation attacks in a more robust and generalised manner
    corecore