254,577 research outputs found
Outlier detection techniques for wireless sensor networks: A survey
In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree
Security in Wireless Sensor Networks: Issues and Challenges
Wireless Sensor Network (WSN) is an emerging technology that shows great
promise for various futuristic applications both for mass public and military.
The sensing technology combined with processing power and wireless
communication makes it lucrative for being exploited in abundance in future.
The inclusion of wireless communication technology also incurs various types of
security threats. The intent of this paper is to investigate the security
related issues and challenges in wireless sensor networks. We identify the
security threats, review proposed security mechanisms for wireless sensor
networks. We also discuss the holistic view of security for ensuring layered
and robust security in wireless sensor networks.Comment: 6 page
Automatic application object migration in sensor networks
Object migration in wireless sensor networks has the potential to reduce energy consumption for a wireless sensor network mesh. Automated migration reduces the need for the programmer to perform manual static analysis to find an efficient layout solution. Instead, the system can self-optimise and adjust to changing conditions. This paper describes an automated, transparent object migration system for wireless sensor networks, implemented on a micro Java virtual machine. The migration system moves objects at runtime around the sensor mesh to reduce communication overheads. The movement of objects is transparent to the application developer. Automated transparent object migration is a core component of Hydra, a distributed operating system for wireless sensor networks that is currently under development. Performance of the system under a complex performance test scenario using a real-world dataset of seismic events is described. The results show that under both simple and complex conditions the migration technique can result in lower data traffic and consequently lower overall energy cost
A resilient key predistribution scheme for multiphase wireless sensor networks
In wireless sensor networks, sensor nodes eventually die due to battery depletion. Wireless sensor networks (WSNs) in which new nodes are periodically redeployed with certain intervals, called generations, to replace the dead nodes are called multi-phase wireless sensor networks. In the literature, there are several key predistribution schemes proposed for secure operation of WSNs. However, these schemes are designed for single phase networks which are not resilient against continuous node capture attacks; even under temporary attacks on the network, the harm caused by the attacker does not heal in time. However, the periodic deployments in multi-phase sensor networks could be utilized to improve the resiliency of the WSNs by deploying nodes with fresh keys. In the literature, there is limited work done in this area. In this paper, we propose a key predistribution scheme for multi-phase wireless sensor networks which is highly resilient under node capture attacks. In our scheme, called RGM (random generation material) key predistribution scheme, each generation of deployment has its own random keying material and pairwise keys are established between node pairs of particular generations. These keys are specific to these generations. Therefore, a captured node cannot be abused to obtain keys of other generations. We compare the performance of our RGM scheme with a well-known multi-phase key predistribution scheme and showed that RGM achieves up to three-fold more resiliency. Even under heavy attacks, our scheme's resiliency performance is 50% better in steady state
A bounded heuristic for collection-based routing in wireless sensor networks
Wireless sensor networks are used to monitor and control physical phenomena and to provide interaction between clients and the physical environment. Clients have been typically users or user applications, but next generation wireless sensor networks will also work in machine-to-machine scenarios where some nodes can be interested in some other nodes' data. These scenarios may run the risk of becoming overloaded with messaging, a pernicious fact in particular for constrained networks where both bandwidth and power supply are limited. Resource collections can be used in wireless sensor networks to improve bandwidth usage and to reduce energy consumption, reducing the overall number of notification packets and wrapping overhead, required for the delivery of sensor data. This article proposes a heuristic algorithm for the planning of both routing and collections, in wireless sensor networks. Results show that collections are always worthwhile, and that the heuristic is able to find feasible and cost effective solutions, approaching its lower bound.FCT from Portugal within the CEOT research center [UID/MULTI/00631/2013
Routing efficiency in wireless sensor-actor networks considering semi-automated architecture
Wireless networks have become increasingly popular and advances in wireless communications and electronics have enabled the development of different kind of networks such as Mobile Ad-hoc Networks (MANETs), Wireless Sensor Networks (WSNs) and Wireless Sensor-Actor Networks (WSANs). These networks have different kind of characteristics, therefore new protocols that fit their features should be developed. We have developed a simulation system to test MANETs, WSNs and WSANs. In this paper, we consider the performance behavior of two protocols: AODV and DSR using TwoRayGround model and Shadowing model for lattice and random topologies. We study the routing efficiency and compare the performance of two protocols for different scenarios. By computer simulations, we found that for large number of nodes when we used TwoRayGround model and random topology, the DSR protocol has a better performance. However, when the transmission rate is higher, the routing efficiency parameter is unstable.Peer ReviewedPostprint (published version
- …
