254 research outputs found

    W-GUN: Whale Optimization for Energy and Delay centric Green Underwater Networks

    Get PDF
    Underwater Sensor Networks (UWSNs) has witnessed significant R&D attention in both academia and industries due to its growing application domain such as border security, freight via sea or river, natural petroleum production, etc. Considering the deep underwater oriented access constraints, energy centric communication for lifetime maximization of tiny sensor nodes in UWSNs is one of the key research themes in this domain. Existing literature on green UWSNs are majorly adapted from the existing techniques in traditional wireless sensor network without giving much attention to the realistic impact of underwater network environments resulting in degraded performance. Towards this end, this paper presents an adapted whale optimization algorithm-based energy and delay centric green UWSNs framework (W-GUN). It focuses on exploiting dynamic underwater network characteristics by effectively utilizing underwater whale centric optimization in relay node selection. Firstly, an underwater relay- node optimization model is mathematically derived focusing on whale and wolf optimization algorithms for incorporating realistic underwater characteristics. Secondly, the optimization model is used to develop an adapted whale and grey wolf optimization algorithm. Thirdly, a complete work-flow of the W-GUN framework is presented with the optimization flowchart. The comparative performance evaluation attests the benefits of the proposed framework as compared to the state-of-the-art techniques considering various metrics related to underwater network environments

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Energy efficient Routing Protocols for Underwater Acoustic Wireless Sensor Network

    Get PDF
    Technological advancement regarding oceanic world discovery and monitoring has led to autonomous communication, which results in the emergence of the Internet of underwater things (IoUT). Underwater acoustic wireless sensor networks have become one of the most recently researched within the IoUT. An underwater acoustic wireless sensor network consists of sensor nodes, autonomous vehicles, and remotely operated vehicles which are normally deployed to carry out a collaborative task within an underwater region. Underwater acoustic wireless sensor networks have become one of the most recently researched area which supports long transmission range. However, acoustic signals experience deformation due to factors which consist of noise, propagation delay, and low bandwidth. Sensor nodes are battery dependent which mean they are difficult to recharge or replace once deployed. Routing protocols play important role in the communication process between these sensor nodes. As a result, this research aims to develop an energy efficient routing protocol that can bring about optimal policies for energy consumption in the process of data aggregation and transmission. The developed routing protocol focused on sparse and dense network architectures by examining the popular ad-hoc routing protocol action on demand distance vector routing protocol (AODV) for sparse networks and low energy adaptive clustering hierarchy (LEACH) for dense network. For a sparse architecture this research identifies current energy and overhead challenges facing AODV which in turn modifies the protocol by creating a new energy aware and overhead friendly routing protocol called action on demand distance vector sparse underwater acoustic routing protocol (AODV-SUARP) for underwater communication. AODV-SUARP introduces the mechanism of route stability function (RSF) by colour mode to select the most energy efficient route to forwards packets. For dense architecture this research identifies the energy challenge facing the conventional LEACH routing protocol which in turn leads to its modification by creating a new energy aware routing protocol called low energy adaptive clustering hierarchy dense underwater acoustic routing protocol (LEACH-DUARP). Furthermore, for the optimal selection of eligible cluster head in a subsequent round LEACH-DUARP introduces a concept called the stability function value (SFV). The developed routing protocols (AODV-SUARP and LEACH-DUARP) were implemented in NS-3 and validated using mathematical modelling. Results obtained indicated both AODV-SUARP and LEACH-DUARP achieves a considerable result compared to other routing protocols in terms of residual energy, packet delivery ratio, and number of dead nodes

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Text Similarity Between Concepts Extracted from Source Code and Documentation

    Get PDF
    Context: Constant evolution in software systems often results in its documentation losing sync with the content of the source code. The traceability research field has often helped in the past with the aim to recover links between code and documentation, when the two fell out of sync. Objective: The aim of this paper is to compare the concepts contained within the source code of a system with those extracted from its documentation, in order to detect how similar these two sets are. If vastly different, the difference between the two sets might indicate a considerable ageing of the documentation, and a need to update it. Methods: In this paper we reduce the source code of 50 software systems to a set of key terms, each containing the concepts of one of the systems sampled. At the same time, we reduce the documentation of each system to another set of key terms. We then use four different approaches for set comparison to detect how the sets are similar. Results: Using the well known Jaccard index as the benchmark for the comparisons, we have discovered that the cosine distance has excellent comparative powers, and depending on the pre-training of the machine learning model. In particular, the SpaCy and the FastText embeddings offer up to 80% and 90% similarity scores. Conclusion: For most of the sampled systems, the source code and the documentation tend to contain very similar concepts. Given the accuracy for one pre-trained model (e.g., FastText), it becomes also evident that a few systems show a measurable drift between the concepts contained in the documentation and in the source code.</p

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others
    • …
    corecore