168,175 research outputs found
Learning-Based Constraint Satisfaction With Sensing Restrictions
In this paper we consider graph-coloring problems, an important subset of
general constraint satisfaction problems that arise in wireless resource
allocation. We constructively establish the existence of fully decentralized
learning-based algorithms that are able to find a proper coloring even in the
presence of strong sensing restrictions, in particular sensing asymmetry of the
type encountered when hidden terminals are present. Our main analytic
contribution is to establish sufficient conditions on the sensing behaviour to
ensure that the solvers find satisfying assignments with probability one. These
conditions take the form of connectivity requirements on the induced sensing
graph. These requirements are mild, and we demonstrate that they are commonly
satisfied in wireless allocation tasks. We argue that our results are of
considerable practical importance in view of the prevalence of both
communication and sensing restrictions in wireless resource allocation
problems. The class of algorithms analysed here requires no message-passing
whatsoever between wireless devices, and we show that they continue to perform
well even when devices are only able to carry out constrained sensing of the
surrounding radio environment
Peak to average power ratio based spatial spectrum sensing for cognitive radio systems
The recent convergence of wireless standards for incorporation of spatial dimension in wireless systems has made spatial spectrum sensing based on Peak to Average Power Ratio (PAPR) of the received signal, a promising approach. This added dimension is principally exploited for stream multiplexing, user multiplexing and spatial diversity. Considering such a wireless environment for primary users, we propose an algorithm for spectrum sensing by secondary users which are also equipped with multiple antennas. The proposed spatial spectrum sensing algorithm is based on the PAPR of the spatially received signals. Simulation results show the improved performance once the information regarding spatial diversity of the primary users is incorporated in the proposed algorithm. Moreover, through simulations a better performance is achieved by using different diversity schemes and different parameters like sensing time and scanning interval
Optimizing Wirelessly Powered Crowd Sensing: Trading energy for data
To overcome the limited coverage in traditional wireless sensor networks,
\emph{mobile crowd sensing} (MCS) has emerged as a new sensing paradigm. To
achieve longer battery lives of user devices and incentive human involvement,
this paper presents a novel approach that seamlessly integrates MCS with
wireless power transfer, called \emph{wirelessly powered crowd sensing} (WPCS),
for supporting crowd sensing with energy consumption and offering rewards as
incentives. The optimization problem is formulated to simultaneously maximize
the data utility and minimize the energy consumption for service operator, by
jointly controlling wireless-power allocation at the \emph{access point} (AP)
as well as sensing-data size, compression ratio, and sensor-transmission
duration at \emph{mobile sensor} (MS). Given the fixed compression ratios, the
optimal power allocation policy is shown to have a \emph{threshold}-based
structure with respect to a defined \emph{crowd-sensing priority} function for
each MS. Given fixed sensing-data utilities, the compression policy achieves
the optimal compression ratio. Extensive simulations are also presented to
verify the efficiency of the contributed mechanisms.Comment: arXiv admin note: text overlap with arXiv:1711.0206
Bayesian compressive sensing framework for spectrum reconstruction in Rayleigh fading channels
Compressive sensing (CS) is a novel digital signal processing technique that has found great interest in
many applications including communication theory and wireless communications. In wireless communications, CS
is particularly suitable for its application in the area of spectrum sensing for cognitive radios, where the complete
spectrum under observation, with many spectral holes, can be modeled as a sparse wide-band signal in the frequency
domain. Considering the initial works performed to exploit the benefits of Bayesian CS in spectrum sensing, the fading
characteristic of wireless communications has not been considered yet to a great extent, although it is an inherent feature
for all sorts of wireless communications and it must be considered for the design of any practically viable wireless system.
In this paper, we extend the Bayesian CS framework for the recovery of a sparse signal, whose nonzero coefficients follow
a Rayleigh distribution. It is then demonstrated via simulations that mean square error significantly improves when
appropriate prior distribution is used for the faded signal coefficients and thus, in turns, the spectrum reconstruction
improves. Different parameters of the system model, e.g., sparsity level and number of measurements, are then varied
to show the consistency of the results for different cases
Analysis Framework for Opportunistic Spectrum OFDMA and its Application to the IEEE 802.22 Standard
We present an analytical model that enables throughput evaluation of
Opportunistic Spectrum Orthogonal Frequency Division Multiple Access (OS-OFDMA)
networks. The core feature of the model, based on a discrete time Markov chain,
is the consideration of different channel and subchannel allocation strategies
under different Primary and Secondary user types, traffic and priority levels.
The analytical model also assesses the impact of different spectrum sensing
strategies on the throughput of OS-OFDMA network. The analysis applies to the
IEEE 802.22 standard, to evaluate the impact of two-stage spectrum sensing
strategy and varying temporal activity of wireless microphones on the IEEE
802.22 throughput. Our study suggests that OS-OFDMA with subchannel notching
and channel bonding could provide almost ten times higher throughput compared
with the design without those options, when the activity and density of
wireless microphones is very high. Furthermore, we confirm that OS-OFDMA
implementation without subchannel notching, used in the IEEE 802.22, is able to
support real-time and non-real-time quality of service classes, provided that
wireless microphones temporal activity is moderate (with approximately one
wireless microphone per 3,000 inhabitants with light urban population density
and short duty cycles). Finally, two-stage spectrum sensing option improves
OS-OFDMA throughput, provided that the length of spectrum sensing at every
stage is optimized using our model
Security in Wireless Sensor Networks: Issues and Challenges
Wireless Sensor Network (WSN) is an emerging technology that shows great
promise for various futuristic applications both for mass public and military.
The sensing technology combined with processing power and wireless
communication makes it lucrative for being exploited in abundance in future.
The inclusion of wireless communication technology also incurs various types of
security threats. The intent of this paper is to investigate the security
related issues and challenges in wireless sensor networks. We identify the
security threats, review proposed security mechanisms for wireless sensor
networks. We also discuss the holistic view of security for ensuring layered
and robust security in wireless sensor networks.Comment: 6 page
Participatory sensing as an enabler for self-organisation in future cellular networks
In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells
- …
