39 research outputs found

    Wireless Scheduling with Power Control

    Full text link
    We consider the scheduling of arbitrary wireless links in the physical model of interference to minimize the time for satisfying all requests. We study here the combined problem of scheduling and power control, where we seek both an assignment of power settings and a partition of the links so that each set satisfies the signal-to-interference-plus-noise (SINR) constraints. We give an algorithm that attains an approximation ratio of O(lognloglogΔ)O(\log n \cdot \log\log \Delta), where nn is the number of links and Δ\Delta is the ratio between the longest and the shortest link length. Under the natural assumption that lengths are represented in binary, this gives the first approximation ratio that is polylogarithmic in the size of the input. The algorithm has the desirable property of using an oblivious power assignment, where the power assigned to a sender depends only on the length of the link. We give evidence that this dependence on Δ\Delta is unavoidable, showing that any reasonably-behaving oblivious power assignment results in a Ω(loglogΔ)\Omega(\log\log \Delta)-approximation. These results hold also for the (weighted) capacity problem of finding a maximum (weighted) subset of links that can be scheduled in a single time slot. In addition, we obtain improved approximation for a bidirectional variant of the scheduling problem, give partial answers to questions about the utility of graphs for modeling physical interference, and generalize the setting from the standard 2-dimensional Euclidean plane to doubling metrics. Finally, we explore the utility of graph models in capturing wireless interference.Comment: Revised full versio

    On Wireless Scheduling Using the Mean Power Assignment

    Full text link
    In this paper the problem of scheduling with power control in wireless networks is studied: given a set of communication requests, one needs to assign the powers of the network nodes, and schedule the transmissions so that they can be done in a minimum time, taking into account the signal interference of concurrently transmitting nodes. The signal interference is modeled by SINR constraints. Approximation algorithms are given for this problem, which use the mean power assignment. The problem of schduling with fixed mean power assignment is also considered, and approximation guarantees are proven

    Wireless Network Stability in the SINR Model

    Full text link
    We study the stability of wireless networks under stochastic arrival processes of packets, and design efficient, distributed algorithms that achieve stability in the SINR (Signal to Interference and Noise Ratio) interference model. Specifically, we make the following contributions. We give a distributed algorithm that achieves Ω(1log2n)\Omega(\frac{1}{\log^2 n})-efficiency on all networks (where nn is the number of links in the network), for all length monotone, sub-linear power assignments. For the power control version of the problem, we give a distributed algorithm with Ω(1logn(logn+loglogΔ))\Omega(\frac{1}{\log n(\log n + \log \log \Delta)})-efficiency (where Δ\Delta is the length diversity of the link set).Comment: 10 pages, appeared in SIROCCO'1
    corecore