92,503 research outputs found

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    A Survey on Simultaneous Wireless Information and Power Transfer

    Get PDF
    This paper presents a comprehensive study related to simultaneous wireless information and power transfer (SWIPT) in different types of wireless communication setups. Harvesting energy using SWIPT is an appealing solution in the context of extending battery life of wireless devices for a fully sustainable communication system. Strong signal power increases power transfer, but also causes more interference in information transfer, causing realization of the SWIPT challenging problem. This article provides an overview of technical evolution of SWIPT. A survey and qualitative comparison of the existing SWIPT schemes is provided to demonstrate their limitations in the current and 5G networks. Open challenges are emphasized and guidelines are provided to adapt the existing schemes in order to overcome these limitations and make them fit for integrating with the modern and emerging next generation communication networks, such as 5G systems

    Simultaneous wireless information and power transfer in modern communication systems

    Get PDF
    Energy harvesting for wireless communication networks is a new paradigm that allows terminals to recharge their batteries from external energy sources in the surrounding environment. A promising energy harvesting technology is wireless power transfer where terminals harvest energy from electromagnetic radiation. Thereby, the energy may be harvested opportunistically from ambient electromagnetic sources or from sources that intentionally transmit electromagnetic energy for energy harvesting purposes. A particularly interesting and challenging scenario arises when sources perform simultaneous wireless information and power transfer (SWIPT), as strong signals not only increase power transfer but also interference. This article provides an overview of SWIPT systems with a particular focus on the hardware realization of rectenna circuits and practical techniques that achieve SWIPT in the domains of time, power, antennas, and space. The article also discusses the benefits of a potential integration of SWIPT technologies in modern communication networks in the context of resource allocation and cooperative cognitive radio networks

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Wireless Medical Sensor Networks: Design Requirements and Enabling Technologies

    Get PDF
    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols—namely, Bluetooth® (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)—are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home

    General analysis on the use of tesla's resonators in domino forms for wireless power transfer

    Get PDF
    In this paper, we present a brief overview of historical developments of wireless power and an analysis on the use of Tesla's resonators in domino forms for wireless power transfer. Relay resonators are spaced between the transmitter and receiver coils with the objectives of maximizing energy efficiency and increasing the overall transmission distance between the power source and the load. Analytical expressions for the optimal load and maximum efficiency at resonance frequency are derived. These equations are verified with practical measurements obtained from both coaxial and noncoaxial domino resonator systems. To avoid the use of high operating frequency for wireless power transfer in previous related research, the technique presented here can be used at submegahertz operation so as to minimize the power loss in both the power supply and the output stage. We demonstrated both theoretically and practically that unequal spacing for the coaxial straight domino systems has better efficiency performance than the equal-spacing method. Also, the flexibility of using resonators in various domino forms is demonstrated. © 2012 IEEE.published_or_final_versio
    corecore