19,589 research outputs found
MISAT: Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology
MISAT is a research and development cluster which will create a small satellite platform based on Micro Systems Technology (MST) aiming at innovative space as well as terrestrial applications. MISAT is part of the Dutch MicroNed program which has established a microsystems infrastructure to fully exploit the MST knowledge chain involving public and industrial partners alike.
The cluster covers MST-related developments for the spacecraft bus and payload, as well as the satellite architecture. Particular emphasis is given to distributed systems in space to fully exploit the potential of miniaturization for future mission concepts. Examples of current developments are wireless sensor and actuator networks with plug and play characteristics, autonomous digital Sun sensors, re-configurable radio front ends with minimum power consumption, or micro-machined electrostatic accelerometer and gradiometer system for scientific research in fundamental physics as well as geophysics.
As a result of MISAT, a first nano-satellite will be launched in 2007 to demonstrate the next generation of Sun sensors, power subsystems and satellite architecture technology. Rapid access to in-orbit technology demonstration and verification will be provided by a series of small satellites. This will include a formation flying mission, which will increasingly rely on MISAT technology to improve functionality and reduce size, mass and power for advanced technology demonstration and novel scientific applications.
A smart voltage and current monitoring system for three phase inverters using an android smartphone application
In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software
Analytical characterisation of the terahertz in-vivo nano-network in the presence of interference based on TS-OOK communication scheme
The envisioned dense nano-network inside the human body at terahertz (THz) frequency suffers a communication performance degradation among nano-devices. The reason for this performance limitation is not only the path loss and molecular absorption noise, but also the presence of multi-user interference and the interference caused by utilising any communication scheme, such as time spread ON—OFF keying (TS-OOK). In this paper, an interference model utilising TS-OOK as a communication scheme of the THz communication channel inside the human body has been developed and the probability distribution of signal-to-interference-plus-noise ratio (SINR) for THz communication within different human tissues, such as blood, skin, and fat, has been analyzed and presented. In addition, this paper evaluates the performance degradation by investigating the mean values of SINR under different node densities in the area and the probabilities of transmitting pulses. It results in the conclusion that the interference restrains the achievable communication distance to approximate 1 mm, and more specific range depends on the particular transmission circumstance. Results presented in this paper also show that by controlling the pulse transmission probability and node density, the system performance can be ameliorated. In particular, SINR of in vivo THz communication between the deterministic targeted transmitter and the receiver with random interfering nodes in the medium improves about 10 dB, when the node density decreases one order. The SINR increases approximate 5 and 2 dB, when the pulse transmitting probability drops from 0.5 to 0.1 and 0.9 to 0.5
- …
