2 research outputs found

    Wireless MIMO Switching: Weighted Sum Mean Square Error and Sum Rate Optimization

    Full text link
    This paper addresses joint transceiver and relay design for a wireless multiple-input-multiple-output (MIMO) switching scheme that enables data exchange among multiple users. Here, a multi-antenna relay linearly precodes the received (uplink) signals from multiple users before forwarding the signal in the downlink, where the purpose of precoding is to let each user receive its desired signal with interference from other users suppressed. The problem of optimizing the precoder based on various design criteria is typically non-convex and difficult to solve. The main contribution of this paper is a unified approach to solve the weighted sum mean square error (MSE) minimization and weighted sum rate maximization problems in MIMO switching. Specifically, an iterative algorithm is proposed for jointly optimizing the relay's precoder and the users' receive filters to minimize the weighted sum MSE. It is also shown that the weighted sum rate maximization problem can be reformulated as an iterated weighted sum MSE minimization problem and can therefore be solved similarly to the case of weighted sum MSE minimization. With properly chosen initial values, the proposed iterative algorithms are asymptotically optimal in both high and low signal-to-noise ratio (SNR) regimes for MIMO switching, either with or without self-interference cancellation (a.k.a., physical-layer network coding). Numerical results show that the optimized MIMO switching scheme based on the proposed algorithms significantly outperforms existing approaches in the literature.Comment: This manuscript is under 2nd review of IEEE Transactions on Information Theor

    Analysis and design of physical-layer network coding for relay networks

    Full text link
    Physical-layer network coding (PNC) is a technique to make use of interference in wireless transmissions to boost the system throughput. In a PNC employed relay network, the relay node directly recovers and transmits a linear combination of its received messages in the physical layer. It has been shown that PNC can achieve near information-capacity rates. PNC is a new information exchange scheme introduced in wireless transmission. In practice, transmitters and receivers need to be designed and optimized, to achieve fast and reliable information exchange. Thus, we would like to ask: How to design the PNC schemes to achieve fast and reliable information exchange? In this thesis, we address this question from the following works: Firstly, we studied channel-uncoded PNC in two-way relay fading channels with QPSK modulation. The computation error probability for computing network coded messages at the relay is derived. We then optimized the network coding functions at the relay to improve the error rate performance. We then worked on channel coded PNC. The codes we studied include classical binary code, modern codes, and lattice codes. We analyzed the distance spectra of channel-coded PNC schemes with classical binary codes, to derive upper bounds for error rates of computing network coded messages at the relay. We designed and optimized irregular repeat-accumulate coded PNC. We modified the conventional extrinsic information transfer chart in the optimization process to suit the superimposed signal received at the relay. We analyzed and designed Eisenstein integer based lattice coded PNC in multi-way relay fading channels, to derive error rate performance bounds of computing network coded messages. Finally we extended our work to multi-way relay channels. We proposed a opportunistic transmission scheme for a pair-wise transmission PNC in a single-input single-output multi-way relay channel, to improve the sum-rate at the relay. The error performance of computing network coded messages at the relay is also improved. We optimized the uplink/downlink channel usage for multi-input multi-output multi-way relay channels with PNC to maximize the degrees of freedom capacity. We also showed that the system sum-rate can be further improved by a proposed iterative optimization algorithm
    corecore