2,405 research outputs found

    Wireless MIMO channel capacity using double stage diversity technique

    Get PDF
    This paper presents an investigation on wireless MIMO channel capacity effect based on double stage diversity technique for indoor environments. In this investigation, the channel capacity is improved by using a novel spatial diversity technique, which originally requires more space to achieve higher data rate. A new configuration (double stage technique) of spatial diversity and polarization diversity is introduced in this investigation, and measured for an indoor environment. Comparative analyses on the linear and X-polarized configurations of the antenna has been conducted for spacings between 0.5 and 2? at 2.4 GHz. The results show that the channel capacity for the double stage diversity configuration could achieve more than 5.6 b/s/Hz. Furthermore, the space between antennas could be reduced up to 150 %, compared to a linear polarized configuration. Thus, the double stage diversity technique has high potential for use in designing a compact system of wireless MIMO communication infrastructure, especially for LTE systems

    Dispensing with Channel Estimation…

    No full text
    In this article, we investigate the feasibility of noncoherent detection schemes in wireless communication systems as a low-complexity alternative to the family of coherent schemes. The noncoherent schemes require no channel knowledge at the receiver for the detection of the received signal, while the coherent schemes require channel inherently complex estimation, which implies that pilot symbols have to be transmitted resulting in a wastage of the available bandwidth as well as the transmission power

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Iterative Deterministic Equivalents for the Performance Analysis of Communication Systems

    Full text link
    In this article, we introduce iterative deterministic equivalents as a novel technique for the performance analysis of communication systems whose channels are modeled by complex combinations of independent random matrices. This technique extends the deterministic equivalent approach for the study of functionals of large random matrices to a broader class of random matrix models which naturally arise as channel models in wireless communications. We present two specific applications: First, we consider a multi-hop amplify-and-forward (AF) MIMO relay channel with noise at each stage and derive deterministic approximations of the mutual information after the Kth hop. Second, we study a MIMO multiple access channel (MAC) where the channel between each transmitter and the receiver is represented by the double-scattering channel model. We provide deterministic approximations of the mutual information, the signal-to-interference-plus-noise ratio (SINR) and sum-rate with minimum-mean-square-error (MMSE) detection and derive the asymptotically optimal precoding matrices. In both scenarios, the approximations can be computed by simple and provably converging fixed-point algorithms and are shown to be almost surely tight in the limit when the number of antennas at each node grows infinitely large. Simulations suggest that the approximations are accurate for realistic system dimensions. The technique of iterative deterministic equivalents can be easily extended to other channel models of interest and is, therefore, also a new contribution to the field of random matrix theory.Comment: submitted to the IEEE Transactions on Information Theory, 43 pages, 4 figure

    Multifunctional MIMO systems: A combined diversity and multiplexing design perspective

    No full text
    In this treatise we investigate the design alternatives of different multiple-input multiple-output schemes while considering the attainable diversity gains, multiplexing gains, and beamforming gains. Following a brief classification of different MIMO schemes, where the different MIMO schemes are categorized as diversity techniques, multiplexing schemes, multiple access arrangements, and beamforming techniques, we introduce the family of multifunctional MIMOs. These multifunctional MIMOs are capable of combining the benefits of several MIMO schemes and hence attaining improved performance in terms of both their bit error rate as well as throughput. The family of multifunctional MIMOs combines the benefits of both space-time coding and the Bell Labs layered space-time scheme as well as those of beamforming. We also introduce the idea of layered steered space-time spreading, which combines the benefits of space-time spreading, V-BLAST, and beamforming with those of the generalized multicarrier direct sequence code-division multiple access concept. Additionally, we compare the attainable diversity, multiplexing, and beamforming gains of the different MIMO schemes in order to document the advantages of multifunctional MIMOs over conventional MIMO schemes

    Generation of correlated Rayleigh fading channels for accurate simulationof promising wireless communication systems

    Get PDF
    In this paper, a generalized method is proposed for the accurate simulation of equal/ unequal power correlated Rayleigh fading channels to overcome the shortcomings of existing methods. Spatial and spectral correlations are also considered in this technique for different transmission conditions. It employs successive coloring for the inphase and quadrature components of successive signals using real correlation vector of successive signal envelopes rather than complex covariance matrix of the Gaussian signals which is utilized in conventional methods. Any number of fading signals with any desired correlations of successive envelope pairs in the interval [0, 1] can be generated with high accuracy. Moreover, factorization of the desired covariance matrix is avoided to overcome the shortcomings and high computational complexity of conventional methods. Extensive simulations of different representative scenarios demonstrate the effectiveness of the proposedtechnique. The simplicity and accuracy of this method will help the researchers to study and simulate the impact of fading correlation on the performance evaluation of various multi-antenna and multicarrier communication systems. Moreover, it enables the engineers for efficient design and deployment of new schemes for feasible wireless application

    From Multi-Keyholes to Measure of Correlation and Power Imbalance in MIMO Channels: Outage Capacity Analysis

    Full text link
    An information-theoretic analysis of a multi-keyhole channel, which includes a number of statistically independent keyholes with possibly different correlation matrices, is given. When the number of keyholes or/and the number of Tx/Rx antennas is large, there is an equivalent Rayleigh-fading channel such that the outage capacities of both channels are asymptotically equal. In the case of a large number of antennas and for a broad class of fading distributions, the instantaneous capacity is shown to be asymptotically Gaussian in distribution, and compact, closed-form expressions for the mean and variance are given. Motivated by the asymptotic analysis, a simple, full-ordering scalar measure of spatial correlation and power imbalance in MIMO channels is introduced, which quantifies the negative impact of these two factors on the outage capacity in a simple and well-tractable way. It does not require the eigenvalue decomposition, and has the full-ordering property. The size-asymptotic results are used to prove Telatar's conjecture for semi-correlated multi-keyhole and Rayleigh channels. Since the keyhole channel model approximates well the relay channel in the amplify-and-forward mode in certain scenarios, these results also apply to the latterComment: accepted by IEEE IT Trans., 201

    Layered Steered Space–Time-Spreading-Aided Generalized MC DS-CDMA

    No full text
    Abstract—We present a novel trifunctional multiple-input– multiple-output (MIMO) scheme that intrinsically amalgamates space–time spreading (STS) to achieve a diversity gain and a Vertical Bell Labs layered space–time (V-BLAST) scheme to attain a multiplexing gain in the context of generalized multicarrier direct-sequence code-division multiple access (MC DS-CDMA), as well as beamforming. Furthermore, the proposed system employs both time- and frequency-domain spreading to increase the number of users, which is also combined with a user-grouping technique to reduce the effects of multiuser interference

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions
    corecore