7,818 research outputs found

    Energy-Efficient Resource Allocation in Multiuser OFDM Systems with Wireless Information and Power Transfer

    Full text link
    In this paper, we study the resource allocation algorithm design for multiuser orthogonal frequency division multiplexing (OFDM) downlink systems with simultaneous wireless information and power transfer. The algorithm design is formulated as a non-convex optimization problem for maximizing the energy efficiency of data transmission (bit/Joule delivered to the users). In particular, the problem formulation takes into account the minimum required system data rate, heterogeneous minimum required power transfers to the users, and the circuit power consumption. Subsequently, by exploiting the method of time-sharing and the properties of nonlinear fractional programming, the considered non-convex optimization problem is solved using an efficient iterative resource allocation algorithm. For each iteration, the optimal power allocation and user selection solution are derived based on Lagrange dual decomposition. Simulation results illustrate that the proposed iterative resource allocation algorithm achieves the maximum energy efficiency of the system and reveal how energy efficiency, system capacity, and wireless power transfer benefit from the presence of multiple users in the system.Comment: 6 pages. The paper has been accepted for publication at the IEEE Wireless Communications and Networking Conference (WCNC) 2013, Shanghai, China, Apr. 201

    Parallel-Interference-Cancellation-Assisted Decision-Directed Channel Estimation for OFDM Systems using Multiple Transmit Antennas

    No full text
    The number of transmit antennas that can be employed in the context of least-squares (LS) channel estimation contrived for orthogonal frequency division multiplexing (OFDM) systems employing multiple transmit antennas is limited by the ratio of the number of subcarriers and the number of significant channel impulse response (CIR)-related taps. In order to allow for more complex scenarios in terms of the number of transmit antennas and users supported, CIR-related tap prediction-filtering-based parallel interference cancellation (PIC)-assisted decision-directed channel estimation (DDCE) is investigated. New explicit expressions are derived for the estimator’s mean-square error (MSE), and a new iterative procedure is devised for the offline optimization of the CIR-related tap predictor coefficients. These new expressions are capable of accounting for the estimator’s novel recursive structure. In the context of our performance results, it is demonstrated, for example, that the estimator is capable of supporting L = 16 transmit antennas, when assuming K = 512 subcarriers and K0 = 64 significant CIR taps, while LS-optimized DDCE would be limited to employing L = 8 transmit antennas. Index Terms—Decision-directed channel estimation (DDCE), multiple transmit antennas, orthogonal frequency division multiplexing (OFDM), parallel interference cancellation (PIC)

    On receiver design for low density signature OFDM (LDS-OFDM)

    Get PDF
    Low density signature orthogonal frequency division multiplexing (LDS-OFDM) is an uplink multi-carrier multiple access scheme that uses low density signatures (LDS) for spreading the symbols in the frequency domain. In this paper, we introduce an effective receiver for the LDS-OFDM scheme. We propose a framework to analyze and design this iterative receiver using extrinsic information transfer (EXIT) charts. Furthermore, a turbo multi-user detector/decoder (MUDD) is proposed for the LDS-OFDM receiver. We show how the turbo MUDD is tuned using EXIT charts analysis. By tuning the turbo-style processing, the turbo MUDD can approach the performance of optimum MUDD with a smaller number of inner iterations. Using the suggested design guidelines in this paper, we show that the proposed structure brings about 2.3 dB performance improvement at a bit error rate (BER) equal to 10-5 over conventional LDS-OFDM while keeping the complexity affordable. Simulations for different scenarios also show that the LDS-OFDM outperforms similar well-known multiple access techniques such as multi-carrier code division multiple access (MC-CDMA) and group-orthogonal MC-CDMA

    Wireless Information and Energy Transfer for Two-Hop Non-Regenerative MIMO-OFDM Relay Networks

    Full text link
    This paper investigates the simultaneous wireless information and energy transfer for the non-regenerative multipleinput multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) relaying system. By considering two practical receiver architectures, we present two protocols, time switchingbased relaying (TSR) and power splitting-based relaying (PSR). To explore the system performance limit, we formulate two optimization problems to maximize the end-to-end achievable information rate with the full channel state information (CSI) assumption. Since both problems are non-convex and have no known solution method, we firstly derive some explicit results by theoretical analysis and then design effective algorithms for them. Numerical results show that the performances of both protocols are greatly affected by the relay position. Specifically, PSR and TSR show very different behaviors to the variation of relay position. The achievable information rate of PSR monotonically decreases when the relay moves from the source towards the destination, but for TSR, the performance is relatively worse when the relay is placed in the middle of the source and the destination. This is the first time to observe such a phenomenon. In addition, it is also shown that PSR always outperforms TSR in such a MIMO-OFDM relaying system. Moreover, the effect of the number of antennas and the number of subcarriers are also discussed.Comment: 16 pages, 12 figures, to appear in IEEE Selected Areas in Communication

    Personal area technologies for internetworked services

    Get PDF

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Iterative Joint Channel Estimation and Multi-User Detection for Multiple-Antenna Aided OFDM Systems

    No full text
    Multiple-Input-Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems have recently attracted substantial research interest. However, compared to Single-Input-Single-Output (SISO) systems, channel estimation in the MIMO scenario becomes more challenging, owing to the increased number of independent transmitter-receiver links to be estimated. In the context of the Bell LAyered Space-Time architecture (BLAST) or Space Division Multiple Access (SDMA) multi-user MIMO OFDM systems, none of the known channel estimation techniques allows the number of users to be higher than the number of receiver antennas, which is often referred to as a “rank-deficient” scenario, owing to the constraint imposed by the rank of the MIMO channel matrix. Against this background, in this paper we propose a new Genetic Algorithm (GA) assisted iterative Joint Channel Estimation and Multi-User Detection (GA-JCEMUD) approach for multi-user MIMO SDMA-OFDM systems, which provides an effective solution to the multi-user MIMO channel estimation problem in the above-mentioned rank-deficient scenario. Furthermore, the GAs invoked in the data detection literature can only provide a hard-decision output for the Forward Error Correction (FEC) or channel decoder, which inevitably limits the system’s achievable performance. By contrast, our proposed GA is capable of providing “soft” outputs and hence it becomes capable of achieving an improved performance with the aid of FEC decoders. A range of simulation results are provided to demonstrate the superiority of the proposed scheme. Index Terms—Channel estimation, genetic algorithm, multiple-input-multiple-output, multi-user detection, orthogonal frequency division multiplexing, space division multiple access
    corecore