1,250 research outputs found

    Performance Analysis of Energy Harvesting Underlay Cooperative Cognitive Radio Relay Networks with Randomly Located Nodes

    Full text link
    In this work, we investigate the successful data communication probability of an energy harvesting co-operative cognitive radio network (CRN) in the presence of Poisson field of primary users (PU). We consider the scenario where, after harvesting energy from primary transmitters (PTs), the secondary transmitter (ST) would transmit its symbol towards secondary destination (SD) through a suitable secondary relay from group of randomly scattered idle nodes within a circular region. We have considered several relay selection criteria in our work for a better relay node selection. We have also analytically evaluated the performance of secondary transmitter in terms of probability of successful symbol transmission. The relationship between the performance of ST and several network entities like density of PUs, transmit power of PTs and required transmit power of ST have been investigated through detailed analysis. The non-trivial trade-off between benefit of energy harvesting and interference from PTs has been explored in this present work. Numerical results are provided to verify the precision of derived analytical expressions

    Harvest-Then-Cooperate: Wireless-Powered Cooperative Communications

    Full text link
    In this paper, we consider a wireless-powered cooperative communication network consisting of one hybrid access-point (AP), one source, and one relay. In contrast to conventional cooperative networks, the source and relay in the considered network have no embedded energy supply. They need to rely on the energy harvested from the signals broadcasted by the AP for their cooperative information transmission. Based on this three-node reference model, we propose a harvest-then-cooperate (HTC) protocol, in which the source and relay harvest energy from the AP in the downlink and work cooperatively in the uplink for the source's information transmission. Considering a delay-limited transmission mode, the approximate closed-form expression for the average throughput of the proposed protocol is derived over Rayleigh fading channels. Subsequently, this analysis is extended to the multi-relay scenario, where the approximate throughput of the HTC protocol with two popular relay selection schemes is derived. The asymptotic analyses for the throughput performance of the considered schemes at high signal-to-noise radio are also provided. All theoretical results are validated by numerical simulations. The impacts of the system parameters, such as time allocation, relay number, and relay position, on the throughput performance are extensively investigated.Comment: Accepted by IEEE Trans. Signal Processin

    Simultaneous Information and Energy Transfer in Large-Scale Networks with/without Relaying

    Full text link
    Energy harvesting (EH) from ambient radio-frequency (RF) electromagnetic waves is an efficient solution for fully autonomous and sustainable communication networks. Most of the related works presented in the literature are based on specific (and small-scale) network structures, which although give useful insights on the potential benefits of the RF-EH technology, cannot characterize the performance of general networks. In this paper, we adopt a large-scale approach of the RF-EH technology and we characterize the performance of a network with random number of transmitter-receiver pairs by using stochastic-geometry tools. Specifically, we analyze the outage probability performance and the average harvested energy, when receivers employ power splitting (PS) technique for "simultaneous" information and energy transfer. A non-cooperative scheme, where information/energy are conveyed only via direct links, is firstly considered and the outage performance of the system as well as the average harvested energy are derived in closed form in function of the power splitting. For this protocol, an interesting optimization problem which minimizes the transmitted power under outage probability and harvesting constraints, is formulated and solved in closed form. In addition, we study a cooperative protocol where sources' transmissions are supported by a random number of potential relays that are randomly distributed into the network. In this case, information/energy can be received at each destination via two independent and orthogonal paths (in case of relaying). We characterize both performance metrics, when a selection combining scheme is applied at the receivers and a single relay is randomly selected for cooperative diversity.Comment: IEEE Transactions on Communication

    Wireless Information and Power Transfer for Multi-Relay Assisted Cooperative Communication

    Full text link
    In this paper, we consider simultaneous wireless information and power transfer (SWIPT) in multi-relay assisted two-hop relay system, where multiple relay nodes simultaneously assist the transmission from source to destination using the concept of distributed space-time coding. Each relay applies power splitting protocol to coordinate the received signal energy for information decoding and energy harvesting. The optimization problems of power splitting ratios at the relays are formulated for both decode-and-forward (DF) and amplify-and-forward (AF) relaying protocols. Efficient algorithms are proposed to find the optimal solutions. Simulations verify the effectiveness of the proposed schemes.Comment: To be published in IEEE Communications Letter

    Energy Harvesting Noncoherent Cooperative Communications

    Full text link
    This paper investigates simultaneous wireless information and power transfer (SWIPT) in energy harvesting (EH) relay systems. Unlike existing SWIPT schemes requiring the channel state information (CSI) for coherent information delivery, we propose a noncoherent SWIPT framework for decode-and-forward (DF) relay systems bypassing the need for CSI and consequently saving energy in the network. The proposed SWIPT framework embraces power-splitting noncoherent DF (PS-NcDF) and time-switching noncoherent DF (TS-NcDF) in a unified form, and supports arbitrary M-ary noncoherent frequency-shift keying (FSK) and differential phase-shift keying (DPSK). Exact (noncoherent) maximum-likelihood detectors (MLDs) for PS-NcDF and TS-NcDF are developed in a unified form, which involves integral evaluations yet serves as the optimum performance benchmark for noncoherent SWIPT. To reduce the computational cost of the exact MLDs, we also propose closed-form approximate MLDs achieving near-optimum performance, thus serving as a practical solution for noncoherent SWIPT. Numerical results demonstrate a performance tradeoff between the first and second hops through the adjustment of time switching or power splitting parameters, whose optimal values minimizing the symbol-error rate (SER) are strictly between 0 and 1. We demonstrate that M-FSK results in a significant energy saving over M-DPSK for M >= 8; thus M-FSK may be more suitable for EH relay systems

    Distributed Power Splitting for SWIPT in Relay Interference Channels using Game Theory

    Full text link
    In this paper, we consider simultaneous wireless information and power transfer (SWIPT) in relay interference channels, where multiple source-destination pairs communicate through their dedicated energy harvesting relays. Each relay needs to split its received signal from sources into two streams: one for information forwarding and the other for energy harvesting. We develop a distributed power splitting framework using game theory to derive a profile of power splitting ratios for all relays that can achieve a good network-wide performance. Specifically, non-cooperative games are respectively formulated for pure amplify-and-forward (AF) and decode-and-forward (DF) networks, in which each link is modeled as a strategic player who aims to maximize its own achievable rate. The existence and uniqueness for the Nash equilibriums (NEs) of the formulated games are analyzed and a distributed algorithm with provable convergence to achieve the NEs is also developed. Subsequently, the developed framework is extended to the more general network setting with mixed AF and DF relays. All the theoretical analyses are validated by extensive numerical results. Simulation results show that the proposed game-theoretical approach can achieve a near-optimal network-wide performance on average, especially for the scenarios with relatively low and moderate interference.Comment: Full version of a paper accepted by IEEE Trans. Wireless Commun., 14 page

    Noncoherent Relaying in Energy Harvesting Communication Systems

    Full text link
    In energy harvesting (EH) relay networks, the coherent communication requires accurate estima- tion/tracking of the instantaneous channel state information (CSI) which consumes extra power. As a remedy, we propose two noncoherent EH relaying protocols based on the amplify-and-forward (AF) relaying, namely, power splitting noncoherent AF (PS-NcAF) and time switching noncoherent AF (TS-NcAF), which do not require any instantaneous CSI. We develop a noncoherent framework of simultaneous wireless information and power transfer (SWIPT), embracing PS-NcAF and TS-NcAF in a unified form. For arbitrary M-ary noncoherent frequency-shift keying (FSK) and differential phase- shift keying (DPSK), we derive maximum-likelihood detectors (MLDs) for PS-NcAF and TS-NcAF in a unified form, which involves integral evaluations yet serves as the optimum performance benchmark. To avoid expensive integral computations, we propose a closed-form detector using the Gauss-Legendre approximation, which achieves almost identical performance as the MLD but at substantially lower complexity. These EH-based noncoherent detectors achieve full diversity in Rayleigh fading. Numerical results demonstrate that our proposed PS-NcAF and TS-NcAF may outperform the conventional grid- powered relay system under the same total power constraint. Various insights which are useful for the design of practical SWIPT relaying systems are obtained. Interestingly, PS-NcAF outperforms TS-NcAF in the single-relay case, whereas TS-NcAF outperforms PS-NcAF in the multi-relay case

    Spatially Random Relay Selection for Full/Half-Duplex Cooperative NOMA Networks

    Full text link
    This paper investigates the impact of relay selection (RS) on the performance of cooperative non-orthogonal multiple access (NOMA), where relays are capable of working in either full-duplex (FD) or half-duplex (HD) mode. A number of relays (i.e., KK relays) are uniformly distributed within the disc. A pair of RS schemes are considered insightfully: 1) Single-stage RS (SRS) scheme; and 2) Two-stage RS (TRS) scheme. In order to characterize the performance of these two RS schemes, new closed-form expressions for both exact and asymptotic outage probabilities are derived. Based on analytical results, the diversity orders achieved by the pair of RS schemes for FD/HD cooperative NOMA are obtained. Our analytical results reveal that: i) The FD-based RS schemes obtain a zero diversity order, which is due to the influence of loop interference (LI) at the relay; and ii) The HD-based RS schemes are capable of achieving a diversity order of KK, which is equal to the number of relays. Finally, simulation results demonstrate that: 1) The FD-based RS schemes have better outage performance than HD-based RS schemes in the low signal-to-noise radio (SNR) region; 2) As the number of relays increases, the pair of RS schemes considered are capable of achieving the lower outage probability; and 3) The outage behaviors of FD/HD-based NOMA SRS/TRS schemes are superior to that of random RS (RRS) and orthogonal multiple access (OMA) based RS schemes.Comment: 15 pages,11 figure

    Truth-Telling Mechanism for Secure Two-Way Relay Communications with Energy-Harvesting Revenue

    Full text link
    This paper brings the novel idea of paying the utility to the winning agents in terms of some physical entity in cooperative communications. Our setting is a secret two-way communication channel where two transmitters exchange information in the presence of an eavesdropper. The relays are selected from a set of interested parties such that the secrecy sum rate is maximized. In return, the selected relay nodes' energy harvesting requirements will be fulfilled up to a certain threshold through their own payoff so that they have the natural incentive to be selected and involved in the communication. However, relays may exaggerate their private information in order to improve their chance to be selected. Our objective is to develop a mechanism for relay selection that enforces them to reveal the truth since otherwise they may be penalized. We also propose a joint cooperative relay beamforming and transmit power optimization scheme based on an alternating optimization approach. Note that the problem is highly non-convex since the objective function appears as a product of three correlated Rayleigh quotients. While a common practice in the existing literature is to optimize the relay beamforming vector for given transmit power via rank relaxation, we propose a second-order cone programming (SOCP)-based approach in this paper which requires a significantly lower computational task. The performance of the incentive control mechanism and the optimization algorithm has been evaluated through numerical simulations.Comment: Accepted in IEEE Transactions on Wireless Communication

    Distributed Multi-Relay Selection in Accumulate-then-Forward Energy Harvesting Relay Networks

    Full text link
    This paper investigates a wireless-powered cooperative network (WPCN) consisting of one source-destination pair and multiple decode-and-forward (DF) relays. We develop an energy threshold based multi-relay selection (ETMRS) scheme for the considered WPCN. The proposed ETMRS scheme can be implemented in a fully distributed manner as the relays only need local information to switch between energy harvesting and information forwarding modes. By modeling the charging/discharging behaviours of the finite-capacity battery at each relay as a finite-state Markov Chain (MC), we derive an analytical expression for the system outage probability of the proposed ETMRS scheme over mixed Nakagami-mm and Rayleigh fading channels. Based on the derived expression, the optimal energy thresholds for all the relays corresponding to the minimum system outage probability can be obtained via an exhaustive search. However, this approach becomes computationally prohibitive when the number of relays and the associated number of battery energy levels is large. To resolve this issue, we propose a heuristic approach to optimize the energy threshold for each relay. To gain some useful insights for practical relay design, we also derive the upper bound for system outage probability corresponding to the case that all relays are equipped with infinite-capacity batteries. Numerical results validate our theoretical analysis. It is shown that the proposed heuristic approach can achieve a near-optimal system performance and our ETMRS scheme outperforms the existing single-relay selection scheme and common energy threshold scheme.Comment: Accepted to appear in IEEE Transactions on Green Communications and Networkin
    • …
    corecore