1,058,648 research outputs found
Common security issues and challenges in wireless sensor networks and IEEE 802.11 wireless mesh networks
Both Wireless Mesh Network (WMN) and Wireless Sensor Network (WSN) are multi-hop wireless networks. WMN is an emerging community based integrated broadband wireless network which ensures high bandwidth ubiquitous internet provision to users, while, WSN is application specific and ensures large scale real-time data processing in complex environment. Both these wireless networks have some common vulnerable features which may increase the chances of different sorts of security attacks. Wireless sensor nodes have computation, memory and power limitations, which do not allow for implementation of complex security mechanism. In this paper, we discuss the common limitations and vulnerable features of WMN and WSN, along with the associated security threats and possible countermeasures. We also propose security mechanisms keeping in view the architecture and limitations of both. This article will serve as a baseline guide for the new researchers who are concern with the security aspects of WMN and WSN
Wireless model-based predictive networked control system over cooperative wireless network
Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks
Security in Wireless Sensor Networks: Issues and Challenges
Wireless Sensor Network (WSN) is an emerging technology that shows great
promise for various futuristic applications both for mass public and military.
The sensing technology combined with processing power and wireless
communication makes it lucrative for being exploited in abundance in future.
The inclusion of wireless communication technology also incurs various types of
security threats. The intent of this paper is to investigate the security
related issues and challenges in wireless sensor networks. We identify the
security threats, review proposed security mechanisms for wireless sensor
networks. We also discuss the holistic view of security for ensuring layered
and robust security in wireless sensor networks.Comment: 6 page
Recent Advances in Joint Wireless Energy and Information Transfer
In this paper, we provide an overview of the recent advances in
microwave-enabled wireless energy transfer (WET) technologies and their
applications in wireless communications. Specifically, we divide our
discussions into three parts. First, we introduce the state-of-the-art WET
technologies and the signal processing techniques to maximize the energy
transfer efficiency. Then, we discuss an interesting paradigm named
simultaneous wireless information and power transfer (SWIPT), where energy and
information are jointly transmitted using the same radio waveform. At last, we
review the recent progress in wireless powered communication networks (WPCN),
where wireless devices communicate using the power harvested by means of WET.
Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201
MIRAI Architecture for Heterogeneous Network
One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available
Wireless actuation of bulk acoustic modes in micromechanical resonators
We report wireless actuation of a Lamb wave micromechanical resonator from a distance of over 1 m with an efficiency of over 15%. Wireless actuation of conventional micromechanical resonators can have broad impact in a number of applications from wireless communication and implantable biomedical devices to distributed sensor networks.Financial support from FemtoDx is acknowledged. (FemtoDx)http://nano.bu.edu/Papers_files/Wireless-APL-4961247.pdfPublished versio
- …
