1,616 research outputs found

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology

    Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model

    Get PDF
    This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind turbine controller without any change in both fault and fault-free cases. This is achieved by inserting T–S proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators to be capable to estimate different generators and rotor speed sensors fault for compensation purposes. Due to the dependency of the FTTC strategy on the fault estimation the designed observer has the capability to estimate a wide range of time varying fault signals. Moreover, the robustness of the observer against the difference between the anemometer wind speed measurement and the immeasurable effective wind speed signal has been taken into account. The corrected measurements fed to a T–S fuzzy dynamic output feedback controller (TSDOFC) designed to track the desired trajectory. The stability proof with H∞ performance and D-stability constraints is formulated as a Linear Matrix Inequality (LMI) problem. The strategy is illustrated using a non-linear benchmark system model of a wind turbine offered within a competition led by the companies Mathworks and KK-Electronic

    Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator

    Get PDF
    © 2021 Springer. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1007/s13198-019-00905-7This paper presents the application nonlinear control to regulate the rotor currents and control the active and reactive powers generated by the Doubly Fed Induction Generator used in the Wind Energy Conversion System (WECS). The proposed control strategies are based on Lyapunov stability theory and include back-stepping control (BSC) and super-twisting sliding mode control. The overall WECS model and control scheme are developed in MATLAB/Simulink and the simulation results have shown that the BSC leads to superior performance and improved transient response as compared to the STSMC controller.Peer reviewe

    Genetic algorithm optimized robust nonlinear observer for a wind turbine system based on permanent magnet synchronous generator

    Get PDF
    © 2022 ISA. Published by Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.isatra.2022.02.004This paper presents an optimal control scheme for a Permanent Magnet Synchronous Generator (PMSG) coupled to a wind turbine operating without a position sensor. This sensorless scheme includes two observers: The first observer uses the flux to estimate the speed. However, an increase in the temperature or a degradation of the permanent magnet characteristics will result in a demagnetization of the machine causing a drop in the flux. The second observer is therefore used to estimate these changes in the flux from the speed and guaranties the stability of the system. This structure leads to a better exchange of information between the two observers, eliminates the problem of encoder and compensates for the demagnetization problem. To improve the precision of the speed estimator, the gain of the non-linear observer is optimized using Genetic Algorithm (GA) and the speed is obtained from a modified Phase Locked Loop (PLL) method using an optimized Sliding Mode Controller (SMC). Furthermore, to enhance the convergence speed of this observer scheme and improve the performance of the system a Fast Super Twisting Sliding Mode Control (FSTSMC) is introduced to reinforce the SMC strategy. A series of simulations are presented to show the effectiveness and robustness of proposed observer scheme.Peer reviewe

    Active fault-tolerant control of nonlinear systems with wind turbine application

    Get PDF
    The thesis concerns the theoretical development of Active Fault-Tolerant Control (AFTC) methods for nonlinear system via T-S multiple-modelling approach. The thesis adopted the estimation and compensation approach to AFTC within a tracking control framework. In this framework, the thesis considers several approaches to robust T-S fuzzy control and T-S fuzzy estimation: T-S fuzzy proportional multiple integral observer (PMIO); T-S fuzzy proportional-proportional integral observer (PPIO); T-S fuzzy virtual sensor (VS) based AFTC; T-S fuzzy Dynamic Output Feedback Control TSDOFC; T-S observer-based feedback control; Sliding Mode Control (SMC). The theoretical concepts have been applied to an offshore wind turbine (OWT) application study. The key developments that present in this thesis are:• The development of three active Fault Tolerant Tracking Control (FTTC) strategies for nonlinear systems described via T-S fuzzy inference modelling. The proposals combine the use of Linear Reference Model Fuzzy Control (LRMFC) with either the estimation and compensation concept or the control reconfiguration concept.• The development of T-S fuzzy observer-based state estimate fuzzy control strategy for nonlinear systems. The developed strategy has the capability to tolerate simultaneous actuator and sensor faults within tracking and regulating control framework. Additionally, a proposal to recover the Separation Principle has also been developed via the use of TSDOFC within the FTTC framework.• The proposals of two FTTC strategies based on the estimation and compensation concept for sustainable OWTs control. The proposals have introduced a significant attribute to the literature of sustainable OWTs control via (1) Obviating the need for Fault Detection and Diagnosis (FDD) unit, (2) Providing useful information to evaluate fault severity via the fault estimation signals.• The development of FTTC architecture for OWTs that combines the use of TSDOFC and a form of cascaded observers (cascaded analytical redundancy). This architecture is proposed in order to ensure the robustness of both the TSDOFC and the EWS estimator against the generator and rotor speed sensor faults.• A sliding mode baseline controller has been proposed within three FTTC strategies for sustainable OWTs control. The proposals utilise the inherent robustness of the SMC to tolerate some matched faults without the need for analytical redundancy. Following this, the combination of SMC and estimation and compensation framework proposed to ensure the close-loop system robustness to various faults.• Within the framework of the developed T-S fuzzy based FTTC strategies, a new perspective to reduce the T-S fuzzy control design conservatism problem has been proposed via the use of different control techniques that demand less design constraints. Moreover, within the SMC based FTTC, an investigation is given to demonstrate the SMC robustness against a wider than usual set of faults is enhanced via designing the sliding surface with minimum dimension of the feedback signals

    Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview

    Get PDF
    Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic

    Nonlinear control and observation of full-variable speed wind turbine systems.

    Get PDF
    With increasing concern for the environmental effects of power generation from fossil fuels, wind energy is a competitive source for electrical power with higher efficiency than other clean sources. However, the nature of this power source makes controlling wind turbines difficult. The variability of wind as a source either requires highly accurate measurement equipment or sophisticated mathematical alternatives. In addition to the unknown quantities of the weather itself, the efficiency of power capture at the turbine blades is highly nonlinear in nature and difficult to ascertain. The ability of either determine these troublesome quantities, or control the system despite ignorance of them, greatly increases the overall efficiency of power capture. To this end, a series of nonlinear controllers and observers have been developed for wind turbine systems

    Real time observer and control scheme for a wind turbine system based on a high order sliding modes

    Get PDF
    The introduction of advanced control algorithms may improve considerably the efficiency of wind turbine systems. This work proposes a high order sliding mode (HOSM) control scheme based on the super twisting algorithm for regulating the wind turbine speed in order to obtain the maximum power from the wind. A robust aerodynamic torque observer, also based on the super twisting algorithm, is included in the control scheme in order to avoid the use of wind speed sensors. The presented robust control scheme ensures good performance under system uncertainties avoiding the chattering problem, which may appear in traditional sliding mode control schemes. The stability analysis of the proposed HOSM observer is provided by means of the Lyapunov stability theory. Experimental results show that the proposed control scheme, based on HOSM controller and observer, provides good performance and that this scheme is robust with respect to system uncertainties and external disturbances.The authors are very grateful to the Basque Government by its support through the project EKOHEGAZ (ELKARTEK KK-2021/00092), to the Diputacion Foral de Alava (DFA) by its support through the project CONAVANTER, to Gipuzkoako Foru Aldundia by its support through the project Etorkizuna Eraikiz 2019, and to the UPV/EHU by its support through the project GIU20/063

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined
    • …
    corecore