1,191,968 research outputs found
The small wind turbine field lab extensive field tests for small wind turbines
This paper describes the research possibilities at the Small Wind Turbine Field Lab and the involved research groups of Ghent University, covering different aspects of a small wind energy system. In contrast to large and medium-sized wind turbines, small wind turbines are still plagued by relatively high production and purchase costs, and low reliability and energy yield. Furthermore, most of them have not been subjected to a field test program. Power-Link, the energy knowledge platform of Ghent University, has for three years operated a modest field test site for small wind turbines, that drew the attention of a lot of manufacturers of small wind turbines. In response, Ghent University decided to launch the Small Wind Turbine Field Lab (SWT Field Lab), to subject small wind turbines to more extensive field tests. Now not only the energy yield is tested, but also topics such as grid integration, structural strength, noise propagation, generator and drive train design and tower construction are studied. All of these parameters are correlated with meteorological data measured on-site
A Model for the Sources of the Slow Solar Wind
Models for the origin of the slow solar wind must account for two seemingly
contradictory observations: The slow wind has the composition of the closed
field corona, implying that it originates from the continuous opening and
closing of flux at the boundary between open and closed field. On the other
hand, the slow wind also has large angular width, up to ~ 60{\circ}, suggesting
that its source extends far from the open-closed boundary. We propose a model
that can explain both observations. The key idea is that the source of the slow
wind at the Sun is a network of narrow (possibly singular) open-field corridors
that map to a web of separatrices and quasi-separatrix layers in the
heliosphere. We compute analytically the topology of an open-field corridor and
show that it produces a quasi-separatrix layer in the heliosphere that extends
to angles far from the heliospheric current sheet. We then use an MHD code and
MDI/SOHO observations of the photospheric magnetic field to calculate
numerically, with high spatial resolution, the quasi-steady solar wind and
magnetic field for a time period preceding the August 1, 2008 total solar
eclipse. Our numerical results imply that, at least for this time period, a web
of separatrices (which we term an S-web) forms with sufficient density and
extent in the heliosphere to account for the observed properties of the slow
wind. We discuss the implications of our S-web model for the structure and
dynamics of the corona and heliosphere, and propose further tests of the model
Principal wind turbines for a conditional portfolio approach to wind farms
We introduce a measure for estimating the best risk-return relation of power
production in wind farms within a given time-lag, conditioned to the velocity
field. The velocity field is represented by a scalar that weighs the influence
of the velocity at each wind turbine at present and previous time-steps for the
present "state" of the wind field. The scalar measure introduced is a linear
combination of the few turbines, that most influence the overall power
production. This quantity is then used as the condition for computing a
conditional expected return and corresponding risk associated to the future
total power output.Comment: 9 pages, conference proceedings of "The science of making torque from
wind
The Galactic Center Isolated Nonthermal Filaments as Analogs of Cometary Plasma Tails
We propose a model for the origin of the isolated nonthermal filaments
observed at the Galactic center based on an analogy to cometary plasma tails.
We invoke the interaction between a large scale magnetized galactic wind and
embedded molecular clouds. As the advected wind magnetic field encounters a
dense molecular cloud, it is impeded and drapes around the cloud, ultimately
forming a current sheet in the wake. This draped field is further stretched by
the wind flow into a long, thin filament whose aspect ratio is determined by
the balance between the dynamical wind and amplified magnetic field pressures.
The key feature of this cometary model is that the filaments are dynamic
configurations, and not static structures. As such, they are local
amplifications of an otherwise weak field and not directly connected to any
static global field. The derived field strengths for the wind and wake are
consistent with observational estimates. Finally, the observed synchrotron
emission is naturally explained by the acceleration of electrons to high energy
by plasma and MHD turbulence generated in the cloud wake.Comment: Uses AAS aasms4.sty macros. ApJ (in press, vol. 521, 20 Aug
Flux-tube geometry and solar wind speed during an activity cycle
The solar wind speed at 1 AU shows variations in latitude and in time which
reflect the evolution of the global background magnetic field during the
activity cycle. It is commonly accepted that the terminal wind speed in a
magnetic flux-tube is anti-correlated with its expansion ratio, which motivated
the definition of widely-used semi-empirical scaling laws relating one to the
other. In practice, such scaling laws require ad-hoc corrections. A predictive
law based solely on physical principles is still missing. We test whether the
flux-tube expansion is the controlling factor of the wind speed at all phases
of the cycle and at all latitudes using a very large sample of wind-carrying
open magnetic flux-tubes. We furthermore search for additional physical
parameters based on the geometry of the coronal magnetic field which have an
influence on the terminal wind flow speed. We use MHD simulations of the corona
and wind coupled to a dynamo model to provide a large statistical ensemble of
open flux-tubes which we analyse conjointly in order to identify relations of
dependence between the wind speed and geometrical parameters of the flux-tubes
which are valid globally (for all latitudes and moments of the cycle). Our
study confirms that the terminal speed of the solar wind depends very strongly
on the geometry of the open magnetic flux-tubes through which it flows. The
total flux-tube expansion is more clearly anti-correlated with the wind speed
for fast rather than for slow wind flows, and effectively controls the
locations of these flows during solar minima. Overall, the actual asymptotic
wind speeds attained are also strongly dependent on field-line inclination and
magnetic field amplitude at the foot-points. We suggest ways of including these
parameters on future predictive scaling-laws for the solar wind speed.Comment: Accepted for publicaton on Astronomy & Astrophysic
Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050
The Sun is a highly dynamic environment that exhibits dynamic behavior on
many different timescales. In particular, coronal holes exhibit temporal and
spatial variability. Signatures of these coronal dynamics are inherited by the
coronal hole wind streams that originate in these regions and can effect the
Earth's magnetosphere. Both the cause of the observed variabilities and how
these translate to fluctuations in the in situ observed solar wind is not yet
fully understood. During solar activity minimum the structure of the magnetic
field typically remains stable over several Carrington rotations (CRs). But how
stable is the solar magnetic field? Here, we address this question by analyzing
the evolution of a coronal hole structure and the corresponding coronal hole
wind stream emitted from this source region over 12 consecutive CRs in 2006. To
this end, we link in situ observations of Solar Wind Ion Composition
Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with
synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric
Observatory (SOHO) at the photospheric level through a combination of ballistic
back-mapping and a potential field source surface (PFSS) approach. Together,
these track the evolution of the open field line region that is identified as
the source region of a recurring coronal hole wind stream.
We find that the shape of the open field line region and to some extent also
the solar wind properties are influenced by surrounding more dynamic closed
loop regions. We show that the freeze-in order can change within a coronal hole
wind stream on small timescales and illustrate a mechanism that can cause
changes in the freeze-in order. The inferred minimal temperature profile is
variable even within coronal hole wind and is in particular most variable in
the outer corona
Flow field analysis
The average mean wind speed integrated over a disk is shown to be extremely close to the mean value of wind speed which would be measured at the center of a disk for most geometries in which a WECS (Wind Energy Conversion System) would operate. Field test results are presented which compare instantaneous records of wind speed integrated over a disk with the wind speed measured at the center of the disk. The wind field that a rotating element would experience is presented which was synthesized from the outputs of an array of anemometers
First E region observations of mesoscale neutral wind interaction with auroral arcs
We report the first observations of E region neutral wind fields and their interaction with auroral arcs at mesoscale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within ∼50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward plasma convection. The wind rotations occurred within 7–16 min. In one case, as an auroral arc propagated from the horizon toward the local zenith, the background E region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modeling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be the greatly enhanced ion drag associated with the increased plasma density and localized ionospheric electric field associated with auroral arcs. In all cases, the F region neutral wind appeared less affected by the auroral arc, although its presence is clear in the data
- …
