1,191,968 research outputs found

    The small wind turbine field lab extensive field tests for small wind turbines

    Get PDF
    This paper describes the research possibilities at the Small Wind Turbine Field Lab and the involved research groups of Ghent University, covering different aspects of a small wind energy system. In contrast to large and medium-sized wind turbines, small wind turbines are still plagued by relatively high production and purchase costs, and low reliability and energy yield. Furthermore, most of them have not been subjected to a field test program. Power-Link, the energy knowledge platform of Ghent University, has for three years operated a modest field test site for small wind turbines, that drew the attention of a lot of manufacturers of small wind turbines. In response, Ghent University decided to launch the Small Wind Turbine Field Lab (SWT Field Lab), to subject small wind turbines to more extensive field tests. Now not only the energy yield is tested, but also topics such as grid integration, structural strength, noise propagation, generator and drive train design and tower construction are studied. All of these parameters are correlated with meteorological data measured on-site

    A Model for the Sources of the Slow Solar Wind

    Get PDF
    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to ~ 60{\circ}, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind and magnetic field for a time period preceding the August 1, 2008 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere, and propose further tests of the model

    Principal wind turbines for a conditional portfolio approach to wind farms

    Full text link
    We introduce a measure for estimating the best risk-return relation of power production in wind farms within a given time-lag, conditioned to the velocity field. The velocity field is represented by a scalar that weighs the influence of the velocity at each wind turbine at present and previous time-steps for the present "state" of the wind field. The scalar measure introduced is a linear combination of the few turbines, that most influence the overall power production. This quantity is then used as the condition for computing a conditional expected return and corresponding risk associated to the future total power output.Comment: 9 pages, conference proceedings of "The science of making torque from wind

    The Galactic Center Isolated Nonthermal Filaments as Analogs of Cometary Plasma Tails

    Get PDF
    We propose a model for the origin of the isolated nonthermal filaments observed at the Galactic center based on an analogy to cometary plasma tails. We invoke the interaction between a large scale magnetized galactic wind and embedded molecular clouds. As the advected wind magnetic field encounters a dense molecular cloud, it is impeded and drapes around the cloud, ultimately forming a current sheet in the wake. This draped field is further stretched by the wind flow into a long, thin filament whose aspect ratio is determined by the balance between the dynamical wind and amplified magnetic field pressures. The key feature of this cometary model is that the filaments are dynamic configurations, and not static structures. As such, they are local amplifications of an otherwise weak field and not directly connected to any static global field. The derived field strengths for the wind and wake are consistent with observational estimates. Finally, the observed synchrotron emission is naturally explained by the acceleration of electrons to high energy by plasma and MHD turbulence generated in the cloud wake.Comment: Uses AAS aasms4.sty macros. ApJ (in press, vol. 521, 20 Aug

    Flux-tube geometry and solar wind speed during an activity cycle

    Full text link
    The solar wind speed at 1 AU shows variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal wind speed in a magnetic flux-tube is anti-correlated with its expansion ratio, which motivated the definition of widely-used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad-hoc corrections. A predictive law based solely on physical principles is still missing. We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. We use MHD simulations of the corona and wind coupled to a dynamo model to provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Our study confirms that the terminal speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the locations of these flows during solar minima. Overall, the actual asymptotic wind speeds attained are also strongly dependent on field-line inclination and magnetic field amplitude at the foot-points. We suggest ways of including these parameters on future predictive scaling-laws for the solar wind speed.Comment: Accepted for publicaton on Astronomy & Astrophysic

    Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050

    Full text link
    The Sun is a highly dynamic environment that exhibits dynamic behavior on many different timescales. In particular, coronal holes exhibit temporal and spatial variability. Signatures of these coronal dynamics are inherited by the coronal hole wind streams that originate in these regions and can effect the Earth's magnetosphere. Both the cause of the observed variabilities and how these translate to fluctuations in the in situ observed solar wind is not yet fully understood. During solar activity minimum the structure of the magnetic field typically remains stable over several Carrington rotations (CRs). But how stable is the solar magnetic field? Here, we address this question by analyzing the evolution of a coronal hole structure and the corresponding coronal hole wind stream emitted from this source region over 12 consecutive CRs in 2006. To this end, we link in situ observations of Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric Observatory (SOHO) at the photospheric level through a combination of ballistic back-mapping and a potential field source surface (PFSS) approach. Together, these track the evolution of the open field line region that is identified as the source region of a recurring coronal hole wind stream. We find that the shape of the open field line region and to some extent also the solar wind properties are influenced by surrounding more dynamic closed loop regions. We show that the freeze-in order can change within a coronal hole wind stream on small timescales and illustrate a mechanism that can cause changes in the freeze-in order. The inferred minimal temperature profile is variable even within coronal hole wind and is in particular most variable in the outer corona

    Flow field analysis

    Get PDF
    The average mean wind speed integrated over a disk is shown to be extremely close to the mean value of wind speed which would be measured at the center of a disk for most geometries in which a WECS (Wind Energy Conversion System) would operate. Field test results are presented which compare instantaneous records of wind speed integrated over a disk with the wind speed measured at the center of the disk. The wind field that a rotating element would experience is presented which was synthesized from the outputs of an array of anemometers

    First E region observations of mesoscale neutral wind interaction with auroral arcs

    Get PDF
    We report the first observations of E region neutral wind fields and their interaction with auroral arcs at mesoscale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within ∼50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward plasma convection. The wind rotations occurred within 7–16 min. In one case, as an auroral arc propagated from the horizon toward the local zenith, the background E region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modeling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be the greatly enhanced ion drag associated with the increased plasma density and localized ionospheric electric field associated with auroral arcs. In all cases, the F region neutral wind appeared less affected by the auroral arc, although its presence is clear in the data
    corecore