6,937 research outputs found
String Indexing for Patterns with Wildcards
We consider the problem of indexing a string of length to report the
occurrences of a query pattern containing characters and wildcards.
Let be the number of occurrences of in , and the size of
the alphabet. We obtain the following results.
- A linear space index with query time .
This significantly improves the previously best known linear space index by Lam
et al. [ISAAC 2007], which requires query time in the worst case.
- An index with query time using space , where is the maximum number of wildcards allowed in the pattern.
This is the first non-trivial bound with this query time.
- A time-space trade-off, generalizing the index by Cole et al. [STOC 2004].
We also show that these indexes can be generalized to allow variable length
gaps in the pattern. Our results are obtained using a novel combination of
well-known and new techniques, which could be of independent interest
A Parameterized Study of Maximum Generalized Pattern Matching Problems
The generalized function matching (GFM) problem has been intensively studied
starting with [Ehrenfeucht and Rozenberg, 1979]. Given a pattern p and a text
t, the goal is to find a mapping from the letters of p to non-empty substrings
of t, such that applying the mapping to p results in t. Very recently, the
problem has been investigated within the framework of parameterized complexity
[Fernau, Schmid, and Villanger, 2013].
In this paper we study the parameterized complexity of the optimization
variant of GFM (called Max-GFM), which has been introduced in [Amir and Nor,
2007]. Here, one is allowed to replace some of the pattern letters with some
special symbols "?", termed wildcards or don't cares, which can be mapped to an
arbitrary substring of the text. The goal is to minimize the number of
wildcards used.
We give a complete classification of the parameterized complexity of Max-GFM
and its variants under a wide range of parameterizations, such as, the number
of occurrences of a letter in the text, the size of the text alphabet, the
number of occurrences of a letter in the pattern, the size of the pattern
alphabet, the maximum length of a string matched to any pattern letter, the
number of wildcards and the maximum size of a string that a wildcard can be
mapped to.Comment: to appear in Proc. IPEC'1
Which Regular Expression Patterns are Hard to Match?
Regular expressions constitute a fundamental notion in formal language theory
and are frequently used in computer science to define search patterns. A
classic algorithm for these problems constructs and simulates a
non-deterministic finite automaton corresponding to the expression, resulting
in an running time (where is the length of the pattern and is
the length of the text). This running time can be improved slightly (by a
polylogarithmic factor), but no significantly faster solutions are known. At
the same time, much faster algorithms exist for various special cases of
regular expressions, including dictionary matching, wildcard matching, subset
matching, word break problem etc.
In this paper, we show that the complexity of regular expression matching can
be characterized based on its {\em depth} (when interpreted as a formula). Our
results hold for expressions involving concatenation, OR, Kleene star and
Kleene plus. For regular expressions of depth two (involving any combination of
the above operators), we show the following dichotomy: matching and membership
testing can be solved in near-linear time, except for "concatenations of
stars", which cannot be solved in strongly sub-quadratic time assuming the
Strong Exponential Time Hypothesis (SETH). For regular expressions of depth
three the picture is more complex. Nevertheless, we show that all problems can
either be solved in strongly sub-quadratic time, or cannot be solved in
strongly sub-quadratic time assuming SETH.
An intriguing special case of membership testing involves regular expressions
of the form "a star of an OR of concatenations", e.g., . This
corresponds to the so-called {\em word break} problem, for which a dynamic
programming algorithm with a runtime of (roughly) is known. We
show that the latter bound is not tight and improve the runtime to
Cursive script recognition using wildcards and multiple experts
Variability in handwriting styles suggests that many letter recognition engines cannot correctly identify some hand-written letters of poor quality at reasonable computational cost. Methods that are capable of searching the resulting sparse graph of letter candidates are therefore required. The method presented here employs ‘wildcards’ to represent missing letter candidates. Multiple experts are used to represent different aspects of handwriting. Each expert evaluates closeness of match and indicates its confidence. Explanation experts determine the degree to which the word alternative under consideration explains extraneous letter candidates. Schemata for normalisation and combination of scores are investigated and their performance compared. Hill climbing yields near-optimal combination weights that outperform comparable methods on identical dynamic handwriting data
Projective simulation with generalization
The ability to generalize is an important feature of any intelligent agent.
Not only because it may allow the agent to cope with large amounts of data, but
also because in some environments, an agent with no generalization capabilities
cannot learn. In this work we outline several criteria for generalization, and
present a dynamic and autonomous machinery that enables projective simulation
agents to meaningfully generalize. Projective simulation, a novel, physical
approach to artificial intelligence, was recently shown to perform well in
standard reinforcement learning problems, with applications in advanced
robotics as well as quantum experiments. Both the basic projective simulation
model and the presented generalization machinery are based on very simple
principles. This allows us to provide a full analytical analysis of the agent's
performance and to illustrate the benefit the agent gains by generalizing.
Specifically, we show that already in basic (but extreme) environments,
learning without generalization may be impossible, and demonstrate how the
presented generalization machinery enables the projective simulation agent to
learn.Comment: 14 pages, 9 figure
Between Subgraph Isomorphism and Maximum Common Subgraph
When a small pattern graph does not occur inside a larger target graph, we can ask how to find "as much of the pattern as possible" inside the target graph. In general, this is known as the maximum common subgraph problem, which is much more computationally challenging in practice than subgraph isomorphism. We introduce a restricted alternative, where we ask if all but k vertices from the pattern can be found in the target graph. This allows for the development of slightly weakened forms of certain invariants from subgraph isomorphism which are based upon degree and number of paths. We show that when k is small, weakening the invariants still retains much of their effectiveness. We are then able to solve this problem on the standard problem instances used to benchmark subgraph isomorphism algorithms, despite these instances being too large for current maximum common subgraph algorithms to handle. Finally, by iteratively increasing k, we obtain an algorithm which is also competitive for the maximum common subgraph
- …
