8,569 research outputs found

    Discovering Implicational Knowledge in Wikidata

    Full text link
    Knowledge graphs have recently become the state-of-the-art tool for representing the diverse and complex knowledge of the world. Examples include the proprietary knowledge graphs of companies such as Google, Facebook, IBM, or Microsoft, but also freely available ones such as YAGO, DBpedia, and Wikidata. A distinguishing feature of Wikidata is that the knowledge is collaboratively edited and curated. While this greatly enhances the scope of Wikidata, it also makes it impossible for a single individual to grasp complex connections between properties or understand the global impact of edits in the graph. We apply Formal Concept Analysis to efficiently identify comprehensible implications that are implicitly present in the data. Although the complex structure of data modelling in Wikidata is not amenable to a direct approach, we overcome this limitation by extracting contextual representations of parts of Wikidata in a systematic fashion. We demonstrate the practical feasibility of our approach through several experiments and show that the results may lead to the discovery of interesting implicational knowledge. Besides providing a method for obtaining large real-world data sets for FCA, we sketch potential applications in offering semantic assistance for editing and curating Wikidata

    Negative Statements Considered Useful

    No full text
    Knowledge bases (KBs), pragmatic collections of knowledge about notable entities, are an important asset in applications such as search, question answering and dialogue. Rooted in a long tradition in knowledge representation, all popular KBs only store positive information, while they abstain from taking any stance towards statements not contained in them. In this paper, we make the case for explicitly stating interesting statements which are not true. Negative statements would be important to overcome current limitations of question answering, yet due to their potential abundance, any effort towards compiling them needs a tight coupling with ranking. We introduce two approaches towards compiling negative statements. (i) In peer-based statistical inferences, we compare entities with highly related entities in order to derive potential negative statements, which we then rank using supervised and unsupervised features. (ii) In query-log-based text extraction, we use a pattern-based approach for harvesting search engine query logs. Experimental results show that both approaches hold promising and complementary potential. Along with this paper, we publish the first datasets on interesting negative information, containing over 1.1M statements for 100K popular Wikidata entities

    Building automated vandalism detection tools for Wikidata

    Full text link
    Wikidata, like Wikipedia, is a knowledge base that anyone can edit. This open collaboration model is powerful in that it reduces barriers to participation and allows a large number of people to contribute. However, it exposes the knowledge base to the risk of vandalism and low-quality contributions. In this work, we build on past work detecting vandalism in Wikipedia to detect vandalism in Wikidata. This work is novel in that identifying damaging changes in a structured knowledge-base requires substantially different feature engineering work than in a text-based wiki like Wikipedia. We also discuss the utility of these classifiers for reducing the overall workload of vandalism patrollers in Wikidata. We describe a machine classification strategy that is able to catch 89% of vandalism while reducing patrollers' workload by 98%, by drawing lightly from contextual features of an edit and heavily from the characteristics of the user making the edit

    EventKG: A Multilingual Event-Centric Temporal Knowledge Graph

    Full text link
    One of the key requirements to facilitate semantic analytics of information regarding contemporary and historical events on the Web, in the news and in social media is the availability of reference knowledge repositories containing comprehensive representations of events and temporal relations. Existing knowledge graphs, with popular examples including DBpedia, YAGO and Wikidata, focus mostly on entity-centric information and are insufficient in terms of their coverage and completeness with respect to events and temporal relations. EventKG presented in this paper is a multilingual event-centric temporal knowledge graph that addresses this gap. EventKG incorporates over 690 thousand contemporary and historical events and over 2.3 million temporal relations extracted from several large-scale knowledge graphs and semi-structured sources and makes them available through a canonical representation

    Ontology population for open-source intelligence: A GATE-based solution

    Get PDF
    Open-Source INTelligence is intelligence based on publicly available sources such as news sites, blogs, forums, etc. The Web is the primary source of information, but once data are crawled, they need to be interpreted and structured. Ontologies may play a crucial role in this process, but because of the vast amount of documents available, automatic mechanisms for their population are needed, starting from the crawled text. This paper presents an approach for the automatic population of predefined ontologies with data extracted from text and discusses the design and realization of a pipeline based on the General Architecture for Text Engineering system, which is interesting for both researchers and practitioners in the field. Some experimental results that are encouraging in terms of extracted correct instances of the ontology are also reported. Furthermore, the paper also describes an alternative approach and provides additional experiments for one of the phases of our pipeline, which requires the use of predefined dictionaries for relevant entities. Through such a variant, the manual workload required in this phase was reduced, still obtaining promising results

    Neural Wikipedian: Generating Textual Summaries from Knowledge Base Triples

    Full text link
    Most people do not interact with Semantic Web data directly. Unless they have the expertise to understand the underlying technology, they need textual or visual interfaces to help them make sense of it. We explore the problem of generating natural language summaries for Semantic Web data. This is non-trivial, especially in an open-domain context. To address this problem, we explore the use of neural networks. Our system encodes the information from a set of triples into a vector of fixed dimensionality and generates a textual summary by conditioning the output on the encoded vector. We train and evaluate our models on two corpora of loosely aligned Wikipedia snippets and DBpedia and Wikidata triples with promising results
    corecore