4 research outputs found

    Non-uniform QMF Decomposition for Wide-band Audio Coding based on Frequency Domain Linear Prediction

    Get PDF
    This paper presents a new technique for perfect reconstruction non-uniform QMF decomposition developed to increase efficiency of a generic wide-band audio coding system based on Frequency Domain Linear Prediction (FDLP). The base line FDLP codec, operating at high bit-rates (~136 kbps), exploits an uniform QMF decomposition into 64 sub-bands followed by sub-band processing based on FDLP. Here, we propose a non-uniform QMF decomposition into 32 frequency sub-bands obtained by merging 64 uniform QMF bands. The merging operation is performed in such a way that bandwidths of the resulting critically sampled sub-bands emulate the characteristics of the critical band filters in the human auditory system. Such frequency decomposition, when employed in the FDLP audio codec, results in a bit-rate reduction of 40% over the base line. We also describe the complete audio codec, which provides high-fidelity audio compression at ~66 kbps. In subjective listening tests, the FDLP codec outperforms MPEG-1 Layer 3 (MP3) and achieves similar qualities as MPEG-4 AAC+ standard

    Autoregressive Modelling of Hilbert Envelopes for Wide-band Audio Coding

    Get PDF
    Frequency Domain Linear Prediction (FDLP) represents the technique for approximating temporal envelopes of a signal using autoregressive models. In this paper, we propose a wide-band audio coding system exploiting FDLP. Specifically, FDLP is applied on critically sampled sub-bands to model the Hilbert envelopes. The residual of the linear prediction forms the Hilbert carrier, which is transmitted along with the envelope parameters. This process is reversed at the decoder to reconstruct the signal. In the objective and subjective quality evaluations, the FDLP based audio codec at 6666 kbps provides competitive results compared to the state-of-art codecs at similar bit-rates

    Wide-Band Audio Coding based on Frequency Domain Linear Prediction

    No full text
    In this paper, we re-visit an original concept of speech coding in which the signal is separated into the carrier modulated by the signal envelope. A recently developed technique, called frequency domain linear prediction (FDLP), is applied for the efficient estimation of the envelope. The processing in the temporal domain allows for a straightforward emulation of the forward temporal masking. This, combined with an efficient non-uniform sub-band decomposition and application of noise shaping in spectral domain instead of temporal domain (a technique to suppress artifacts in tonal audio signals), yields a codec that does not rely on the linear speech production model but rather uses well accepted concept of frequency-selective auditory perception. As such, the codec is not only specific for coding speech but also well suited for coding other important acoustic signals such as music and mixed content. The quality of the proposed codec at 66 kbps is evaluated using objective and subjective quality assessments. The evaluation indicates competitive performance with the MPEG codecs operating at similar bit-rates

    Wide-Band Audio Coding Based on Frequency-Domain Linear Prediction

    No full text
    We revisit an original concept of speech coding in which the signal is separated into the carrier modulated by the signal envelope. A recently developed technique, called frequency-domain linear prediction (FDLP), is applied for the efficient estimation of the envelope. The processing in the temporal domain allows for a straightforward emulation of the forward temporal masking. This, combined with an efficient nonuniform sub-band decomposition and application of noise shaping in spectral domain instead of temporal domain (a technique to suppress artifacts in tonal audio signals), yields a codec that does not rely on the linear speech production model but rather uses well-accepted concept of frequency-selective auditory perception. As such, the codec is not only specific for coding speech but also well suited for coding other important acoustic signals such as music and mixed content. The quality of the proposed codec at 66 kbps is evaluated using objective and subjective quality assessments. The evaluation indicates competitive performance with the MPEG codecs operating at similar bit rates
    corecore