4 research outputs found

    Why Extension-Based Proofs Fail

    Full text link
    We introduce extension-based proofs, a class of impossibility proofs that includes valency arguments. They are modelled as an interaction between a prover and a protocol. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k > 1 processes in a wait-free manner in certain asynchronous models. However, it was unknown whether proofs based on simpler techniques were possible. We show that this impossibility result cannot be obtained for one of these models by an extension-based proof and, hence, extension-based proofs are limited in power.Comment: This version of the paper is for the NIS model. Previous versions of the paper are for the NIIS mode

    Why extension-based proofs fail

    No full text
    We introduce extension-based proofs, a class of impossibility proofs that includes valency arguments. They are modelled as an interaction between a prover and a protocol. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve -set agreement among processes or approximate agreement on a cycle of length 4 among processes in a wait-free manner in asynchronous models where processes communicate using objects that can be constructed from shared registers. However, it was unknown whether proofs based on simpler techniques were possible. We show that these impossibility results cannot be obtained by extension-based proofs in the iterated snapshot model and, hence, extension-based proofs are limited in power

    Why extension-based proofs fail

    No full text
    It is impossible to deterministically solve wait-free consensus in an asynchronous system. The classic proof uses a valency argument, which constructs an infinite execution by repeatedly extending a finite execution. We introduce extension-based proofs, a class of impossibility proofs that are modelled as an interaction between a prover and a protocol and that include valency arguments. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k ≥ 2 processes in a wait-free manner. However, it was unknown whether proofs based on simpler techniques were possible. We show that this impossibility result cannot be obtained by an extension-based proof and, hence, extension-based proofs are limited in power

    Brief Announcement: Why Extension-Based Proofs Fail

    No full text
    We introduce extension-based proofs, a class of impossibility proofs that includes valency arguments. They are modelled as an interaction between a prover and a protocol. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k ≥ 2 processes in a wait-free manner. However, it was unknown whether proofs based on simpler techniques were possible. We explain why this impossibility result cannot be obtained by an extension-based proof and, hence, extension-based proofs are limited in power
    corecore