2 research outputs found

    Why Learning of Large-Scale Neural Networks Behaves Like Convex Optimization

    Full text link
    In this paper, we present some theoretical work to explain why simple gradient descent methods are so successful in solving non-convex optimization problems in learning large-scale neural networks (NN). After introducing a mathematical tool called canonical space, we have proved that the objective functions in learning NNs are convex in the canonical model space. We further elucidate that the gradients between the original NN model space and the canonical space are related by a pointwise linear transformation, which is represented by the so-called disparity matrix. Furthermore, we have proved that gradient descent methods surely converge to a global minimum of zero loss provided that the disparity matrices maintain full rank. If this full-rank condition holds, the learning of NNs behaves in the same way as normal convex optimization. At last, we have shown that the chance to have singular disparity matrices is extremely slim in large NNs. In particular, when over-parameterized NNs are randomly initialized, the gradient decent algorithms converge to a global minimum of zero loss in probability.Comment: 10 page

    A Latent Space Theory for Emergent Abilities in Large Language Models

    Full text link
    Languages are not created randomly but rather to communicate information. There is a strong association between languages and their underlying meanings, resulting in a sparse joint distribution that is heavily peaked according to their correlations. Moreover, these peak values happen to match with the marginal distribution of languages due to the sparsity. With the advent of LLMs trained on big data and large models, we can now precisely assess the marginal distribution of languages, providing a convenient means of exploring the sparse structures in the joint distribution for effective inferences. In this paper, we categorize languages as either unambiguous or {\epsilon}-ambiguous and present quantitative results to demonstrate that the emergent abilities of LLMs, such as language understanding, in-context learning, chain-of-thought prompting, and effective instruction fine-tuning, can all be attributed to Bayesian inference on the sparse joint distribution of languages.Comment: 17 pages, 3 figure
    corecore