2,934 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    TCP in 5G mmWave Networks: Link Level Retransmissions and MP-TCP

    Full text link
    MmWave communications, one of the cornerstones of future 5G mobile networks, are characterized at the same time by a potential multi-gigabit capacity and by a very dynamic channel, sensitive to blockage, wide fluctuations in the received signal quality, and possibly also sudden link disruption. While the performance of physical and MAC layer schemes that address these issues has been thoroughly investigated in the literature, the complex interactions between mmWave links and transport layer protocols such as TCP are still relatively unexplored. This paper uses the ns-3 mmWave module, with its channel model based on real measurements in New York City, to analyze the performance of the Linux TCP/IP stack (i) with and without link-layer retransmissions, showing that they are fundamental to reach a high TCP throughput on mmWave links and (ii) with Multipath TCP (MP-TCP) over multiple LTE and mmWave links, illustrating which are the throughput-optimal combinations of secondary paths and congestion control algorithms in different conditions.Comment: 6 pages, 11 figures, accepted for presentation at the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS

    Downlink and Uplink Cell Association with Traditional Macrocells and Millimeter Wave Small Cells

    Full text link
    Millimeter wave (mmWave) links will offer high capacity but are poor at penetrating into or diffracting around solid objects. Thus, we consider a hybrid cellular network with traditional sub 6 GHz macrocells coexisting with denser mmWave small cells, where a mobile user can connect to either opportunistically. We develop a general analytical model to characterize and derive the uplink and downlink cell association in view of the SINR and rate coverage probabilities in such a mixed deployment. We offer extensive validation of these analytical results (which rely on several simplifying assumptions) with simulation results. Using the analytical results, different decoupled uplink and downlink cell association strategies are investigated and their superiority is shown compared to the traditional coupled approach. Finally, small cell biasing in mmWave is studied, and we show that unprecedented biasing values are desirable due to the wide bandwidth.Comment: 30 pages, 9 figures. Submitted to IEEE Transactions on Wireless Communication

    Hybrid Spectrum Sharing in mmWave Cellular Networks

    Full text link
    While spectrum at millimeter wave (mmWave) frequencies is less scarce than at traditional frequencies below 6 GHz, still it is not unlimited, in particular if we consider the requirements from other services using the same band and the need to license mmWave bands to multiple mobile operators. Therefore, an efficient spectrum access scheme is critical to harvest the maximum benefit from emerging mmWave technologies. In this paper, we introduce a new hybrid spectrum access scheme for mmWave networks, where data is aggregated through two mmWave carriers with different characteristics. In particular, we consider the case of a hybrid spectrum scheme between a mmWave band with exclusive access and a mmWave band where spectrum is pooled between multiple operators. To the best of our knowledge, this is the first study proposing hybrid spectrum access for mmWave networks and providing a quantitative assessment of its benefits. Our results show that this approach provides major advantages with respect to traditional fully licensed or fully unlicensed spectrum access schemes, though further work is needed to achieve a more complete understanding of both technical and non technical implications
    corecore