70 research outputs found

    Improving Robustness of Machine Translation with Synthetic Noise

    Full text link
    Modern Machine Translation (MT) systems perform consistently well on clean, in-domain text. However most human generated text, particularly in the realm of social media, is full of typos, slang, dialect, idiolect and other noise which can have a disastrous impact on the accuracy of output translation. In this paper we leverage the Machine Translation of Noisy Text (MTNT) dataset to enhance the robustness of MT systems by emulating naturally occurring noise in otherwise clean data. Synthesizing noise in this manner we are ultimately able to make a vanilla MT system resilient to naturally occurring noise and partially mitigate loss in accuracy resulting therefrom.Comment: Accepted at NAACL 201

    Multimodal Machine Translation with Embedding Prediction

    Full text link
    Multimodal machine translation is an attractive application of neural machine translation (NMT). It helps computers to deeply understand visual objects and their relations with natural languages. However, multimodal NMT systems suffer from a shortage of available training data, resulting in poor performance for translating rare words. In NMT, pretrained word embeddings have been shown to improve NMT of low-resource domains, and a search-based approach is proposed to address the rare word problem. In this study, we effectively combine these two approaches in the context of multimodal NMT and explore how we can take full advantage of pretrained word embeddings to better translate rare words. We report overall performance improvements of 1.24 METEOR and 2.49 BLEU and achieve an improvement of 7.67 F-score for rare word translation.Comment: 6 pages; NAACL 2019 Student Research Worksho

    Target Conditioned Sampling: Optimizing Data Selection for Multilingual Neural Machine Translation

    Full text link
    To improve low-resource Neural Machine Translation (NMT) with multilingual corpora, training on the most related high-resource language only is often more effective than using all data available (Neubig and Hu, 2018). However, it is possible that an intelligent data selection strategy can further improve low-resource NMT with data from other auxiliary languages. In this paper, we seek to construct a sampling distribution over all multilingual data, so that it minimizes the training loss of the low-resource language. Based on this formulation, we propose an efficient algorithm, Target Conditioned Sampling (TCS), which first samples a target sentence, and then conditionally samples its source sentence. Experiments show that TCS brings significant gains of up to 2 BLEU on three of four languages we test, with minimal training overhead.Comment: Accepted at ACL 201

    Training Neural Machine Translation using Word Embedding-based Loss

    Full text link
    In neural machine translation (NMT), the computational cost at the output layer increases with the size of the target-side vocabulary. Using a limited-size vocabulary instead may cause a significant decrease in translation quality. This trade-off is derived from a softmax-based loss function that handles in-dictionary words independently, in which word similarity is not considered. In this paper, we propose a novel NMT loss function that includes word similarity in forms of distances in a word embedding space. The proposed loss function encourages an NMT decoder to generate words close to their references in the embedding space; this helps the decoder to choose similar acceptable words when the actual best candidates are not included in the vocabulary due to its size limitation. In experiments using ASPEC Japanese-to-English and IWSLT17 English-to-French data sets, the proposed method showed improvements against a standard NMT baseline in both datasets; especially with IWSLT17 En-Fr, it achieved up to +1.72 in BLEU and +1.99 in METEOR. When the target-side vocabulary was very limited to 1,000 words, the proposed method demonstrated a substantial gain, +1.72 in METEOR with ASPEC Ja-En

    Transformer to CNN: Label-scarce distillation for efficient text classification

    Full text link
    Significant advances have been made in Natural Language Processing (NLP) modelling since the beginning of 2018. The new approaches allow for accurate results, even when there is little labelled data, because these NLP models can benefit from training on both task-agnostic and task-specific unlabelled data. However, these advantages come with significant size and computational costs. This workshop paper outlines how our proposed convolutional student architecture, having been trained by a distillation process from a large-scale model, can achieve 300x inference speedup and 39x reduction in parameter count. In some cases, the student model performance surpasses its teacher on the studied tasks.Comment: Accepted paper for CDNNRIA workshop at NeurIPS 2018. (3 pages + references

    Development of Word Embeddings for Uzbek Language

    Full text link
    In this paper, we share the process of developing word embeddings for the Cyrillic variant of the Uzbek language. The result of our work is the first publicly available set of word vectors trained on the word2vec, GloVe, and fastText algorithms using a high-quality web crawl corpus developed in-house. The developed word embeddings can be used in many natural language processing downstream tasks.Comment: 7 page

    Incorporating Bilingual Dictionaries for Low Resource Semi-Supervised Neural Machine Translation

    Full text link
    We explore ways of incorporating bilingual dictionaries to enable semi-supervised neural machine translation. Conventional back-translation methods have shown success in leveraging target side monolingual data. However, since the quality of back-translation models is tied to the size of the available parallel corpora, this could adversely impact the synthetically generated sentences in a low resource setting. We propose a simple data augmentation technique to address both this shortcoming. We incorporate widely available bilingual dictionaries that yield word-by-word translations to generate synthetic sentences. This automatically expands the vocabulary of the model while maintaining high quality content. Our method shows an appreciable improvement in performance over strong baselines

    On Dimensional Linguistic Properties of the Word Embedding Space

    Full text link
    Word embeddings have become a staple of several natural language processing tasks, yet much remains to be understood about their properties. In this work, we analyze word embeddings in terms of their principal components and arrive at a number of novel and counterintuitive observations. In particular, we characterize the utility of variance explained by the principal components as a proxy for downstream performance. Furthermore, through syntactic probing of the principal embedding space, we show that the syntactic information captured by a principal component does not correlate with the amount of variance it explains. Consequently, we investigate the limitations of variance based embedding post-processing and demonstrate that such post-processing is counter-productive in sentence classification and machine translation tasks. Finally, we offer a few precautionary guidelines on applying variance based embedding post-processing and explain why non-isotropic geometry might be integral to word embedding performance.Comment: Published at ACL RepL4NLP 202

    Using Multi-Sense Vector Embeddings for Reverse Dictionaries

    Full text link
    Popular word embedding methods such as word2vec and GloVe assign a single vector representation to each word, even if a word has multiple distinct meanings. Multi-sense embeddings instead provide different vectors for each sense of a word. However, they typically cannot serve as a drop-in replacement for conventional single-sense embeddings, because the correct sense vector needs to be selected for each word. In this work, we study the effect of multi-sense embeddings on the task of reverse dictionaries. We propose a technique to easily integrate them into an existing neural network architecture using an attention mechanism. Our experiments demonstrate that large improvements can be obtained when employing multi-sense embeddings both in the input sequence as well as for the target representation. An analysis of the sense distributions and of the learned attention is provided as well.Comment: Accepted as long paper at the 13th International Conference on Computational Semantics (IWCS 2019

    compare-mt: A Tool for Holistic Comparison of Language Generation Systems

    Full text link
    In this paper, we describe compare-mt, a tool for holistic analysis and comparison of the results of systems for language generation tasks such as machine translation. The main goal of the tool is to give the user a high-level and coherent view of the salient differences between systems that can then be used to guide further analysis or system improvement. It implements a number of tools to do so, such as analysis of accuracy of generation of particular types of words, bucketed histograms of sentence accuracies or counts based on salient characteristics, and extraction of characteristic nn-grams for each system. It also has a number of advanced features such as use of linguistic labels, source side data, or comparison of log likelihoods for probabilistic models, and also aims to be easily extensible by users to new types of analysis. The code is available at https://github.com/neulab/compare-mtComment: Updated and longer version of NAACL 2019 Demo Pape
    • …
    corecore