86 research outputs found

    Will This Video Go Viral? Explaining and Predicting the Popularity of Youtube Videos

    Full text link
    What makes content go viral? Which videos become popular and why others don't? Such questions have elicited significant attention from both researchers and industry, particularly in the context of online media. A range of models have been recently proposed to explain and predict popularity; however, there is a short supply of practical tools, accessible for regular users, that leverage these theoretical results. HIPie -- an interactive visualization system -- is created to fill this gap, by enabling users to reason about the virality and the popularity of online videos. It retrieves the metadata and the past popularity series of Youtube videos, it employs Hawkes Intensity Process, a state-of-the-art online popularity model for explaining and predicting video popularity, and it presents videos comparatively in a series of interactive plots. This system will help both content consumers and content producers in a range of data-driven inquiries, such as to comparatively analyze videos and channels, to explain and predict future popularity, to identify viral videos, and to estimate response to online promotion.Comment: 4 page

    Shallow reading with Deep Learning: Predicting popularity of online content using only its title

    Full text link
    With the ever decreasing attention span of contemporary Internet users, the title of online content (such as a news article or video) can be a major factor in determining its popularity. To take advantage of this phenomenon, we propose a new method based on a bidirectional Long Short-Term Memory (LSTM) neural network designed to predict the popularity of online content using only its title. We evaluate the proposed architecture on two distinct datasets of news articles and news videos distributed in social media that contain over 40,000 samples in total. On those datasets, our approach improves the performance over traditional shallow approaches by a margin of 15%. Additionally, we show that using pre-trained word vectors in the embedding layer improves the results of LSTM models, especially when the training set is small. To our knowledge, this is the first attempt of applying popularity prediction using only textual information from the title

    Recurrent Neural Networks for Online Video Popularity Prediction

    Full text link
    In this paper, we address the problem of popularity prediction of online videos shared in social media. We prove that this challenging task can be approached using recently proposed deep neural network architectures. We cast the popularity prediction problem as a classification task and we aim to solve it using only visual cues extracted from videos. To that end, we propose a new method based on a Long-term Recurrent Convolutional Network (LRCN) that incorporates the sequentiality of the information in the model. Results obtained on a dataset of over 37'000 videos published on Facebook show that using our method leads to over 30% improvement in prediction performance over the traditional shallow approaches and can provide valuable insights for content creators

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi
    • …
    corecore