55 research outputs found

    Discrete Optimization in Early Vision - Model Tractability Versus Fidelity

    Get PDF
    Early vision is the process occurring before any semantic interpretation of an image takes place. Motion estimation, object segmentation and detection are all parts of early vision, but recognition is not. Some models in early vision are easy to perform inference with---they are tractable. Others describe the reality well---they have high fidelity. This thesis improves the tractability-fidelity trade-off of the current state of the art by introducing new discrete methods for image segmentation and other problems of early vision. The first part studies pseudo-boolean optimization, both from a theoretical perspective as well as a practical one by introducing new algorithms. The main result is the generalization of the roof duality concept to polynomials of higher degree than two. Another focus is parallelization; discrete optimization methods for multi-core processors, computer clusters, and graphical processing units are presented. Remaining in an image segmentation context, the second part studies parametric problems where a set of model parameters and a segmentation are estimated simultaneously. For a small number of parameters these problems can still be optimally solved. One application is an optimal method for solving the two-phase Mumford-Shah functional. The third part shifts the focus to curvature regularization---where the commonly used length and area penalization is replaced by curvature in two and three dimensions. These problems can be discretized over a mesh and special attention is given to the mesh geometry. Specifically, hexagonal meshes in the plane are compared to square ones and a method for generating adaptive meshes is introduced and evaluated. The framework is then extended to curvature regularization of surfaces. Finally, the thesis is concluded by three applications to early vision problems: cardiac MRI segmentation, image registration, and cell classification

    (Global) Optimization: Historical notes and recent developments

    Get PDF
    Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width of scope of current computational approaches and theoretical results about nonconvex optimization problems. Before the presentation of the recent developments, which are subdivided into two parts related to heuristic and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the initial attempts, survived, what was not considered at all as well as a few approaches which have been recently rediscovered, mostly in connection with machine learning

    Cardinality Constrained Optimization Problems

    Get PDF
    In this thesis, we examine optimization problems with a constraint that allows for only a certain number of variables to be nonzero. This constraint, which is called a cardinality constraint, has received considerable attention in a number of areas such as machine learning, statistics, computational finance, and operations management. Despite their practical needs, most optimization problems with a cardinality constraints are hard to solve due to their nonconvexity. We focus on constructing tight convex relaxations to such problems

    Advances in Graph-Cut Optimization: Multi-Surface Models, Label Costs, and Hierarchical Costs

    Get PDF
    Computer vision is full of problems that are elegantly expressed in terms of mathematical optimization, or energy minimization. This is particularly true of low-level inference problems such as cleaning up noisy signals, clustering and classifying data, or estimating 3D points from images. Energies let us state each problem as a clear, precise objective function. Minimizing the correct energy would, hypothetically, yield a good solution to the corresponding problem. Unfortunately, even for low-level problems we are confronted by energies that are computationally hard—often NP-hard—to minimize. As a consequence, a rather large portion of computer vision research is dedicated to proposing better energies and better algorithms for energies. This dissertation presents work along the same line, specifically new energies and algorithms based on graph cuts. We present three distinct contributions. First we consider biomedical segmentation where the object of interest comprises multiple distinct regions of uncertain shape (e.g. blood vessels, airways, bone tissue). We show that this common yet difficult scenario can be modeled as an energy over multiple interacting surfaces, and can be globally optimized by a single graph cut. Second, we introduce multi-label energies with label costs and provide algorithms to minimize them. We show how label costs are useful for clustering and robust estimation problems in vision. Third, we characterize a class of energies with hierarchical costs and propose a novel hierarchical fusion algorithm with improved approximation guarantees. Hierarchical costs are natural for modeling an array of difficult problems, e.g. segmentation with hierarchical context, simultaneous estimation of motions and homographies, or detecting hierarchies of patterns

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    Methods for Inference in Graphical Models

    Get PDF
    Graphical models provide a flexible, powerful and compact way to model relationships between random variables, and have been applied with great success in many domains. Combining prior beliefs with observed evidence to form a prediction is called inference. Problems of great interest include finding a configuration with highest probability (MAP inference) or solving for the distribution over a subset of variables (marginal inference). Further, these methods are often critical subroutines for learning the relationships. However, inference is computationally intractable in general. Hence, much effort has focused on two themes: finding subdomains where exact inference is solvable efficiently, or identifying approximate methods that work well. We explore both these themes, restricting attention to undirected graphical models with discrete variables. First we address exact MAP inference by advancing the recent method of reducing the problem to finding a maximum weight stable set (MWSS) on a derived graph, which, if perfect, admits polynomial time inference. We derive new results for this approach, including a general decomposition theorem for models of any order and number of labels, extensions of results for binary pairwise models with submodular cost functions to higher order, and a characterization of which binary pairwise models can be efficiently solved with this method. This clarifies the power of the approach on this class of models, improves our toolbox and provides insight into the range of tractable models. Next we consider methods of approximate inference, with particular emphasis on the Bethe approximation, which is in widespread use and has proved remarkably effective, yet is still far from being completely understood. We derive new formulations and properties of the derivatives of the Bethe free energy, then use these to establish an algorithm to compute log of the optimum Bethe partition function to arbitrary epsilon-accuracy. Further, if the model is attractive, we demonstrate a fully polynomial-time approximation scheme (FPTAS), which is an important theoretical result, and demonstrate its practical applications. Next we explore ways to tease apart the two aspects of the Bethe approximation, i.e. the polytope relaxation and the entropy approximation. We derive analytic results, show how optimization may be explored over various polytopes in practice, even for large models, and remark on the observed performance compared to the true distribution and the tree-reweighted (TRW) approximation. This reveals important novel observations and helps guide inference in practice. Finally, we present results related to clamping a selection of variables in a model. We derive novel lower bounds on an array of approximate partition functions based only on the model's topology. Further, we show that in an attractive binary pairwise model, clamping any variable and summing over the approximate sub-partition functions can only increase (hence improve) the Bethe approximation, then use this to provide a new, short proof that the Bethe partition function lower bounds the true value for this class of models. The bulk of this work focuses on the class of binary, pairwise models, but several results apply more generally

    On the Complexity of Random Satisfiability Problems with Planted Solutions

    Get PDF
    The problem of identifying a planted assignment given a random kk-SAT formula consistent with the assignment exhibits a large algorithmic gap: while the planted solution becomes unique and can be identified given a formula with O(nlogn)O(n\log n) clauses, there are distributions over clauses for which the best known efficient algorithms require nk/2n^{k/2} clauses. We propose and study a unified model for planted kk-SAT, which captures well-known special cases. An instance is described by a planted assignment σ\sigma and a distribution on clauses with kk literals. We define its distribution complexity as the largest rr for which the distribution is not rr-wise independent (1rk1 \le r \le k for any distribution with a planted assignment). Our main result is an unconditional lower bound, tight up to logarithmic factors, for statistical (query) algorithms [Kearns 1998, Feldman et. al 2012], matching known upper bounds, which, as we show, can be implemented using a statistical algorithm. Since known approaches for problems over distributions have statistical analogues (spectral, MCMC, gradient-based, convex optimization etc.), this lower bound provides a rigorous explanation of the observed algorithmic gap. The proof introduces a new general technique for the analysis of statistical query algorithms. It also points to a geometric paring phenomenon in the space of all planted assignments. We describe consequences of our lower bounds to Feige's refutation hypothesis [Feige 2002] and to lower bounds on general convex programs that solve planted kk-SAT. Our bounds also extend to other planted kk-CSP models, and, in particular, provide concrete evidence for the security of Goldreich's one-way function and the associated pseudorandom generator when used with a sufficiently hard predicate [Goldreich 2000].Comment: Extended abstract appeared in STOC 201

    Provable Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More

    Full text link
    A machine learning model is traditionally considered robust if its prediction remains (almost) constant under input perturbations with small norm. However, real-world tasks like molecular property prediction or point cloud segmentation have inherent equivariances, such as rotation or permutation equivariance. In such tasks, even perturbations with large norm do not necessarily change an input's semantic content. Furthermore, there are perturbations for which a model's prediction explicitly needs to change. For the first time, we propose a sound notion of adversarial robustness that accounts for task equivariance. We then demonstrate that provable robustness can be achieved by (1) choosing a model that matches the task's equivariances (2) certifying traditional adversarial robustness. Certification methods are, however, unavailable for many models, such as those with continuous equivariances. We close this gap by developing the framework of equivariance-preserving randomized smoothing, which enables architecture-agnostic certification. We additionally derive the first architecture-specific graph edit distance certificates, i.e. sound robustness guarantees for isomorphism equivariant tasks like node classification. Overall, a sound notion of robustness is an important prerequisite for future work at the intersection of robust and geometric machine learning.Comment: Accepted at NeurIPS 202

    Strengths and Limitations of Linear Programming Relaxations

    Get PDF
    Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable candidates for outperforming the current state-of-the-art approximation guarantees for NP-hard problems, for which there still exists a gap between the inapproximability results and the approximation guarantees that we know how to achieve in polynomial time. In this thesis, we address both the power and the limitations of these relaxations, as well as the connection between the shortcomings of these relaxations and the inapproximability of the underlying problem. In the first part, we study the limitations of LP relaxations of well-known graph problems such as the Vertex Cover problem and the Independent Set problem. We prove that any small LP relaxation for the aforementioned problems, cannot have an integrality gap strictly better than 22 and ω(1)\omega(1), respectively. Furthermore, our lower bound for the Independent Set problem also holds for any SDP relaxation. Prior to our work, it was only known that such LP relaxations cannot have an integrality gap better than 1.51.5 for the Vertex Cover Problem, and better than 22 for the Independent Set problem. In the second part, we study the so-called knapsack cover inequalities that are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield LP relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. We address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. In the last part, we show a close connection between structural hardness for k-partite graphs and tight inapproximability results for scheduling problems with precedence constraints. This connection is inspired by a family of integrality gap instances of a certain LP relaxation. Assuming the hardness of an optimization problem on k-partite graphs, we obtain a hardness of 2ε2-\varepsilon for the problem of minimizing the makespan for scheduling with preemption on identical parallel machines, and a super constant inapproximability for the problem of scheduling on related parallel machines. Prior to this result, it was only known that the first problem does not admit a PTAS, and the second problem is NP-hard to approximate within a factor strictly better than 2, assuming the Unique Games Conjecture
    corecore