15 research outputs found

    What does Attention in Neural Machine Translation Pay Attention to?

    Full text link
    Attention in neural machine translation provides the possibility to encode relevant parts of the source sentence at each translation step. As a result, attention is considered to be an alignment model as well. However, there is no work that specifically studies attention and provides analysis of what is being learned by attention models. Thus, the question still remains that how attention is similar or different from the traditional alignment. In this paper, we provide detailed analysis of attention and compare it to traditional alignment. We answer the question of whether attention is only capable of modelling translational equivalent or it captures more information. We show that attention is different from alignment in some cases and is capturing useful information other than alignments.Comment: To appear in IJCNLP 201

    SLUA: A Super Lightweight Unsupervised Word Alignment Model via Cross-Lingual Contrastive Learning

    Full text link
    Word alignment is essential for the down-streaming cross-lingual language understanding and generation tasks. Recently, the performance of the neural word alignment models has exceeded that of statistical models. However, they heavily rely on sophisticated translation models. In this study, we propose a super lightweight unsupervised word alignment (SLUA) model, in which bidirectional symmetric attention trained with a contrastive learning objective is introduced, and an agreement loss is employed to bind the attention maps, such that the alignments follow mirror-like symmetry hypothesis. Experimental results on several public benchmarks demonstrate that our model achieves competitive, if not better, performance compared to the state of the art in word alignment while significantly reducing the training and decoding time on average. Further ablation analysis and case studies show the superiority of our proposed SLUA. Notably, we recognize our model as a pioneer attempt to unify bilingual word embedding and word alignments. Encouragingly, our approach achieves 16.4x speedup against GIZA++, and 50x parameter compression} compared with the Transformer-based alignment methods. We will release our code to facilitate the community.Comment: Work in progres

    Interrogating the Explanatory Power of Attention in Neural Machine Translation

    Full text link
    Attention models have become a crucial component in neural machine translation (NMT). They are often implicitly or explicitly used to justify the model's decision in generating a specific token but it has not yet been rigorously established to what extent attention is a reliable source of information in NMT. To evaluate the explanatory power of attention for NMT, we examine the possibility of yielding the same prediction but with counterfactual attention models that modify crucial aspects of the trained attention model. Using these counterfactual attention mechanisms we assess the extent to which they still preserve the generation of function and content words in the translation process. Compared to a state of the art attention model, our counterfactual attention models produce 68% of function words and 21% of content words in our German-English dataset. Our experiments demonstrate that attention models by themselves cannot reliably explain the decisions made by a NMT model.Comment: Accepted at the 3rd Workshop on Neural Generation and Translation (WNGT 2019) held at EMNLP-IJCNLP 2019 (Camera ready

    Linear Log-Normal Attention with Unbiased Concentration

    Full text link
    Transformer models have achieved remarkable results in a wide range of applications. However, their scalability is hampered by the quadratic time and memory complexity of the self-attention mechanism concerning the sequence length. This limitation poses a substantial obstacle when dealing with long documents or high-resolution images. In this work, we study the self-attention mechanism by analyzing the distribution of the attention matrix and its concentration ability. Furthermore, we propose instruments to measure these quantities and introduce a novel self-attention mechanism, Linear Log-Normal Attention, designed to emulate the distribution and concentration behavior of the original self-attention. Our experimental results on popular natural language benchmarks reveal that our proposed Linear Log-Normal Attention outperforms other linearized attention alternatives, offering a promising avenue for enhancing the scalability of transformer models.Comment: 22 pages, 20 figures, 5 tables, submitted to ICLR202

    What do End-to-End Speech Models Learn about Speaker, Language and Channel Information? A Layer-wise and Neuron-level Analysis

    Full text link
    End-to-end DNN architectures have pushed the state-of-the-art in speech technologies, as well as in other spheres of AI, leading researchers to train more complex and deeper models. These improvements came at the cost of transparency. DNNs are innately opaque and difficult to interpret. We no longer understand what features are learned, where they are preserved, and how they inter-operate. Such an analysis is important for better model understanding, debugging and to ensure fairness in ethical decision making. In this work, we analyze the representations trained within deep speech models, towards the task of speaker recognition, dialect identification and reconstruction of masked signals. We carry a layer- and neuron-level analysis on the utterance-level representations captured within pretrained speech models for speaker, language and channel properties. We study: is this information captured in the learned representations? where is it preserved? how is it distributed? and can we identify a minimal subset of network that posses this information. Using diagnostic classifiers, we answered these questions. Our results reveal: (i) channel and gender information is omnipresent and is redundantly distributed (ii) complex properties such as dialectal information is encoded only in the task-oriented pretrained network and is localised in the upper layers (iii) a minimal subset of neurons can be extracted to encode the predefined property (iv) salient neurons are sometimes shared between properties and can highlights presence of biases in the network. Our cross-architectural comparison indicates that (v) the pretrained models captures speaker-invariant information and (vi) the pretrained CNNs models are competitive to the Transformers for encoding information for the studied properties. To the best of our knowledge, this is the first study to investigate neuron analysis on the speech models.Comment: Submitted to CSL. Keywords: Speech, Neuron Analysis, Interpretibility, Diagnostic Classifier, AI explainability, End-to-End Architectur

    An empirical analysis of phrase-based and neural machine translation

    Get PDF
    Two popular types of machine translation (MT) are phrase-based and neural machine translation systems. Both of these types of systems are composed of multiple complex models or layers. Each of these models and layers learns different linguistic aspects of the source language. However, for some of these models and layers, it is not clear which linguistic phenomena are learned or how this information is learned. For phrase-based MT systems, it is often clear what information is learned by each model, and the question is rather how this information is learned, especially for its phrase reordering model. For neural machine translation systems, the situation is even more complex, since for many cases it is not exactly clear what information is learned and how it is learned. To shed light on what linguistic phenomena are captured by MT systems, we analyze the behavior of important models in both phrase-based and neural MT systems. We consider phrase reordering models from phrase-based MT systems to investigate which words from inside of a phrase have the biggest impact on defining the phrase reordering behavior. Additionally, to contribute to the interpretability of neural MT systems we study the behavior of the attention model, which is a key component in neural MT systems and the closest model in functionality to phrase reordering models in phrase-based systems. The attention model together with the encoder hidden state representations form the main components to encode source side linguistic information in neural MT. To this end, we also analyze the information captured in the encoder hidden state representations of a neural MT system. We investigate the extent to which syntactic and lexical-semantic information from the source side is captured by hidden state representations of different neural MT architectures.Comment: PhD thesis, University of Amsterdam, October 2020. https://pure.uva.nl/ws/files/51388868/Thesis.pd
    corecore