49 research outputs found

    New debiasing strategies in collaborative filtering recommender systems: modeling user conformity, multiple biases, and causality.

    Get PDF
    Recommender Systems are widely used to personalize the user experience in a diverse set of online applications ranging from e-commerce and education to social media and online entertainment. These State of the Art AI systems can suffer from several biases that may occur at different stages of the recommendation life-cycle. For instance, using biased data to train recommendation models may lead to several issues, such as the discrepancy between online and offline evaluation, decreasing the recommendation performance, and hurting the user experience. Bias can occur during the data collection stage where the data inherits the user-item interaction biases, such as selection and exposure bias. Bias can also occur in the training stage, where popular items tend to be recommended much more frequently given that they received more interactions to start with. The closed feedback loop nature of online recommender systems will further amplify the latter biases as well. In this dissertation, we study the bias in the context of Collaborative Filtering recommender system, and propose a new Popularity Correction Matrix Factorization (PCMF) that aims to improve the recommender system performance as well as decrease popularity bias and increase the diversity of items in the recommendation lists. PCMF mitigates popularity bias by disentangling relevance and conformity and by learning a user-personalized bias vector to capture the users\u27 individual conformity levels along a full spectrum of conformity bias. One shortcoming of the proposed PCMF debiasing approach, is its assumption that the recommender system is affected by only popularity bias. However in the real word, different types of bias do occur simultaneously and interact with one another. We therefore relax the latter assumption and propose a multi-pronged approach that can account for two biases simultaneously, namely popularity and exposure bias. our experimental results show that accounting for multiple biases does improve the results in terms of providing more accurate and less biased results. Finally, we propose a novel two-stage debiasing approach, inspired from the proximal causal inference framework. Unlike the existing causal IPS approach that corrects for observed confounders, our proposed approach corrects for both observed and potential unobserved confounders. The approach relies on a pair of negative control variables to adjust for the bias in the potential ratings. Our proposed approach outperforms state of the art causal approaches, proving that accounting for unobserved confounders can improve the recommendation system\u27s performance

    Multi-style explainable matrix factorization techniques for recommender systems.

    Get PDF
    Black-box recommender system models are machine learning models that generate personalized recommendations without explaining how the recommendations were generated to the user or giving them a way to correct wrong assumptions made about them by the model. However, compared to white-box models, which are transparent and scrutable, black-box models are generally more accurate. Recent research has shown that accuracy alone is not sufficient for user satisfaction. One such black-box model is Matrix Factorization, a State of the Art recommendation technique that is widely used due to its ability to deal with sparse data sets and to produce accurate recommendations. Recent work has proposed new Matrix Factorization models that are explainable by incorporating explanations derived from semantic knowledge graphs, user neighborhood, or item neighborhood graphs into the model learning process. These Explainable Matrix Factorization (EMF) methods have the benefit of providing explanations without sacrificing accuracy. However, their explanations tend to be limited to only one explanation style. In this dissertation, we propose a framework comprising new machine learning methods to build explainable models that can make recommendations with multiple explanation-styles, by hybridizing multiple EMF models and by proposing new EMF models that explain recommendations using tags. The various pre-calculated explainability scores, leveraged in our proposed methods, have all been validated in prior work that conducted user studies to evaluate users’ satisfaction with each style individually. Unlike most existing work that generates explanations post-hoc, i.e., after the predictions have already been made, our framework is based on calculating explainability scores directly from available data, before the model is learned, and then using them as part of a regularization mechanism, to guide the model learning. Unlike post-hoc methods, our framework makes it possible to learn machine learning models that take into account the explanation scores, therefore ensuring higher transparency. Our evaluation experiments show that our proposed methods provide accurate recommendations while also providing users with multiple styles of explanations about how data was used to generate each recommendation. Each explanation style also provides additional decision-making information that empowers the user to either trust or scrutinize the recommendations. Although, rooted in the hybrid recommendation framework, our proposed methods make a significant step forward in explainable AI and beyond existing hybrid frameworks, because the proposed hybridization mechanisms make an intentional effort to take into account the individual models’ explanations and not only their output predicted ratings

    A Novel Non-Negative Matrix Factorization Method for Recommender Systems

    Get PDF
    Recommender systems collect various kinds of data to create their recommendations. Collaborative filtering is a common technique in this area. This technique gathers and analyzes information on users preferences, and then estimates what users will like based on their similarity to other users. However, most of current collaborative filtering approaches have faced two problems: sparsity and scalability. This paper proposes a novel method by applying non-negative matrix factorization, which alleviates these problems via matrix factorization and similarity. Non-negative matrix factorization attempts to find two non-negative matrices whose product can well approximate the original matrix. It also imposes non-negative constraints on the latent factors. The proposed method presents novel update rules to learn the latent factors for predicting unknown rating. Unlike most of collaborative filtering methods, the proposed method can predict all the unknown ratings. It is easily implemented and its computational complexity is very low. Empirical studies on MovieLens and Book-Crossing datasets display that the proposed method is more tolerant against the problems of sparsity and scalability, and obtains good results

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    Learning Explainable User Sentiment and Preferences for Information Filtering

    Get PDF
    In the last decade, online social networks have enabled people to interact in many ways with each other and with content. The digital traces of such actions reveal people's preferences towards online content such as news or products. These traces often result from interactions such as sharing or liking, but also from interactions in natural language. The continuous growth of the amount of content and of digital traces has led to information overload: surrounded by large volumes of information, people are facing difficulties when searching for information relevant to their interests. To improve user experience, information systems must be able to assist users in achieving their search goals, effectively and efficiently. This thesis is concerned with two important challenges that information systems need to address in order to significantly improve search experience and overcome information overload. First, these systems need to model accurately the variety of user traces, and second, they need to meaningfully explain search results and recommendations to users. To address these challenges, this thesis proposes novel methods based on machine learning to model user sentiment and preferences for information filtering systems, which are effective, scalable, and easily interpretable by humans. We focus on two prominent types of user traces in social networks: on the one hand, user comments accompanied by unary preferences such as likes, and on the other hand, user reviews accompanied by numerical preferences such as star ratings. In both cases, we advocate that by better understanding user text through mining its semantics and modeling its structure, we can not only improve information filtering, but also explain predictions to users. Within this context, we aim to answer three main research questions, namely: (i)~how do item semantics help to predict unary preferences; (ii)~how do sentiments of free-form user texts help to predict unary preferences; and (iii)~how to model fine-grained numerical preferences from user review texts. Our goal is to model and extract from user text the knowledge required to answer these questions, and to obtain insights on how to design better information filtering systems that are more effective and improve user experience. To answer the first question, we formulate the recommendation problem based on unary preferences as a top-N retrieval task and we define an appropriate dataset and metrics for measuring performance. Then, we propose and evaluate several content-based methods based on semantic similarities under presence or absence of preferences. To answer the second question, we propose a sentiment-aware neighborhood model which integrates the sentiment of user comments with unary preferences, either through fixed or through learned mapping functions. For the latter type, we propose a learning algorithm which adapts the sentiment of user comments to unary preferences at collective or individual levels. To answer the third question, we cast the problem of modeling user attitude toward aspects of items as a weakly supervised problem, and we propose a weighted multiple-instance learning method for solving it. Lastly, we show that the learned saliency weights, apart from being easily interpretable, are useful indicators for review segmentation and summarization
    corecore