577 research outputs found

    Feynman integrals and motives

    Get PDF
    This article gives an overview of recent results on the relation between quantum field theory and motives, with an emphasis on two different approaches: a "bottom-up" approach based on the algebraic geometry of varieties associated to Feynman graphs, and a "top-down" approach based on the comparison of the properties of associated categorical structures. This survey is mostly based on joint work of the author with Paolo Aluffi, along the lines of the first approach, and on previous work of the author with Alain Connes on the second approach.Comment: 32 pages LaTeX, 3 figures, to appear in the Proceedings of the 5th European Congress of Mathematic

    Automated theory formation in pure mathematics

    Get PDF
    The automation of specific mathematical tasks such as theorem proving and algebraic manipulation have been much researched. However, there have only been a few isolated attempts to automate the whole theory formation process. Such a process involves forming new concepts, performing calculations, making conjectures, proving theorems and finding counterexamples. Previous programs which perform theory formation are limited in their functionality and their generality. We introduce the HR program which implements a new model for theory formation. This model involves a cycle of mathematical activity, whereby concepts are formed, conjectures about the concepts are made and attempts to settle the conjectures are undertaken.HR has seven general production rules for producing a new concept from old ones and employs a best first search by building new concepts from the most interesting old ones. To enable this, HR has various measures which estimate the interestingness of a concept. During concept formation, HR uses empirical evidence to suggest conjectures and employs the Otter theorem prover to attempt to prove a given conjecture. If this fails, HR will invoke the MACE model generator to attempt to disprove the conjecture by finding a counterexample. Information and new knowledge arising from the attempt to settle a conjecture is used to assess the concepts involved in the conjecture, which fuels the heuristic search and closes the cycle.The main aim of the project has been to develop our model of theory formation and to implement this in HR. To describe the project in the thesis, we first motivate the problem of automated theory formation and survey the literature in this area. We then discuss how HR invents concepts, makes and settles conjectures and how it assesses the concepts and conjectures to facilitate a heuristic search. We present results to evaluate HR in terms of the quality of the theories it produces and the effectiveness of its techniques. A secondary aim of the project has been to apply HR to mathematical discovery and we discuss how HR has successfully invented new concepts and conjectures in number theory

    Valence Bonds in Random Quantum Magnets: Theory and Application to YbMgGaO4

    Get PDF
    We analyze the effect of quenched disorder on spin-1/2 quantum magnets in which magnetic frustration promotes the formation of local singlets. Our results include a theory for 2d valence-bond solids subject to weak bond randomness, as well as extensions to stronger disorder regimes where we make connections with quantum spin liquids. We find, on various lattices, that the destruction of a valence-bond solid phase by weak quenched disorder leads inevitably to the nucleation of topological defects carrying spin-1/2 moments. This renormalizes the lattice into a strongly random spin network with interesting low-energy excitations. Similarly when short-ranged valence bonds would be pinned by stronger disorder, we find that this putative glass is unstable to defects that carry spin-1/2 magnetic moments, and whose residual interactions decide the ultimate low energy fate. Motivated by these results we conjecture Lieb-Schultz-Mattis-like restrictions on ground states for disordered magnets with spin-1/2 per statistical unit cell. These conjectures are supported by an argument for 1d spin chains. We apply insights from this study to the phenomenology of YbMgGaO4_4, a recently discovered triangular lattice spin-1/2 insulator which was proposed to be a quantum spin liquid. We instead explore a description based on the present theory. Experimental signatures, including unusual specific heat, thermal conductivity, and dynamical structure factor, and their behavior in a magnetic field, are predicted from the theory, and compare favorably with existing measurements on YbMgGaO4_4 and related materials.Comment: v2: Stylistic revisions to improve clarity. 22 pages, 8 figures, 2 tables main text; 13 pages, 3 figures appendice
    • ā€¦
    corecore