12,018 research outputs found

    Network Lasso: Clustering and Optimization in Large Graphs

    Full text link
    Convex optimization is an essential tool for modern data analysis, as it provides a framework to formulate and solve many problems in machine learning and data mining. However, general convex optimization solvers do not scale well, and scalable solvers are often specialized to only work on a narrow class of problems. Therefore, there is a need for simple, scalable algorithms that can solve many common optimization problems. In this paper, we introduce the \emph{network lasso}, a generalization of the group lasso to a network setting that allows for simultaneous clustering and optimization on graphs. We develop an algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in a distributed and scalable manner, which allows for guaranteed global convergence even on large graphs. We also examine a non-convex extension of this approach. We then demonstrate that many types of problems can be expressed in our framework. We focus on three in particular - binary classification, predicting housing prices, and event detection in time series data - comparing the network lasso to baseline approaches and showing that it is both a fast and accurate method of solving large optimization problems

    Ambulance Emergency Response Optimization in Developing Countries

    Full text link
    The lack of emergency medical transportation is viewed as the main barrier to the access of emergency medical care in low and middle-income countries (LMICs). In this paper, we present a robust optimization approach to optimize both the location and routing of emergency response vehicles, accounting for uncertainty in travel times and spatial demand characteristic of LMICs. We traveled to Dhaka, Bangladesh, the sixth largest and third most densely populated city in the world, to conduct field research resulting in the collection of two unique datasets that inform our approach. This data is leveraged to develop machine learning methodologies to estimate demand for emergency medical services in a LMIC setting and to predict the travel time between any two locations in the road network for different times of day and days of the week. We combine our robust optimization and machine learning frameworks with real data to provide an in-depth investigation into three policy-related questions. First, we demonstrate that outpost locations optimized for weekday rush hour lead to good performance for all times of day and days of the week. Second, we find that significant improvements in emergency response times can be achieved by re-locating a small number of outposts and that the performance of the current system could be replicated using only 30% of the resources. Lastly, we show that a fleet of small motorcycle-based ambulances has the potential to significantly outperform traditional ambulance vans. In particular, they are able to capture three times more demand while reducing the median response time by 42% due to increased routing flexibility offered by nimble vehicles on a larger road network. Our results provide practical insights for emergency response optimization that can be leveraged by hospital-based and private ambulance providers in Dhaka and other urban centers in LMICs

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Get PDF
    Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR). According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO), which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability

    Multi-Objective Approaches to Markov Decision Processes with Uncertain Transition Parameters

    Full text link
    Markov decision processes (MDPs) are a popular model for performance analysis and optimization of stochastic systems. The parameters of stochastic behavior of MDPs are estimates from empirical observations of a system; their values are not known precisely. Different types of MDPs with uncertain, imprecise or bounded transition rates or probabilities and rewards exist in the literature. Commonly, analysis of models with uncertainties amounts to searching for the most robust policy which means that the goal is to generate a policy with the greatest lower bound on performance (or, symmetrically, the lowest upper bound on costs). However, hedging against an unlikely worst case may lead to losses in other situations. In general, one is interested in policies that behave well in all situations which results in a multi-objective view on decision making. In this paper, we consider policies for the expected discounted reward measure of MDPs with uncertain parameters. In particular, the approach is defined for bounded-parameter MDPs (BMDPs) [8]. In this setting the worst, best and average case performances of a policy are analyzed simultaneously, which yields a multi-scenario multi-objective optimization problem. The paper presents and evaluates approaches to compute the pure Pareto optimal policies in the value vector space.Comment: 9 pages, 5 figures, preprint for VALUETOOLS 201
    • …
    corecore