11,350 research outputs found

    Local Edge Betweenness based Label Propagation for Community Detection in Complex Networks

    Full text link
    Nowadays, identification and detection community structures in complex networks is an important factor in extracting useful information from networks. Label propagation algorithm with near linear-time complexity is one of the most popular methods for detecting community structures, yet its uncertainty and randomness is a defective factor. Merging LPA with other community detection metrics would improve its accuracy and reduce instability of LPA. Considering this point, in this paper we tried to use edge betweenness centrality to improve LPA performance. On the other hand, calculating edge betweenness centrality is expensive, so as an alternative metric, we try to use local edge betweenness and present LPA-LEB (Label Propagation Algorithm Local Edge Betweenness). Experimental results on both real-world and benchmark networks show that LPA-LEB possesses higher accuracy and stability than LPA when detecting community structures in networks.Comment: 6 page

    On the relationship between Gaussian stochastic blockmodels and label propagation algorithms

    Full text link
    The problem of community detection receives great attention in recent years. Many methods have been proposed to discover communities in networks. In this paper, we propose a Gaussian stochastic blockmodel that uses Gaussian distributions to fit weight of edges in networks for non-overlapping community detection. The maximum likelihood estimation of this model has the same objective function as general label propagation with node preference. The node preference of a specific vertex turns out to be a value proportional to the intra-community eigenvector centrality (the corresponding entry in principal eigenvector of the adjacency matrix of the subgraph inside that vertex's community) under maximum likelihood estimation. Additionally, the maximum likelihood estimation of a constrained version of our model is highly related to another extension of label propagation algorithm, namely, the label propagation algorithm under constraint. Experiments show that the proposed Gaussian stochastic blockmodel performs well on various benchmark networks.Comment: 22 pages, 17 figure

    Node-Centric Detection of Overlapping Communities in Social Networks

    Full text link
    We present NECTAR, a community detection algorithm that generalizes Louvain method's local search heuristic for overlapping community structures. NECTAR chooses dynamically which objective function to optimize based on the network on which it is invoked. Our experimental evaluation on both synthetic benchmark graphs and real-world networks, based on ground-truth communities, shows that NECTAR provides excellent results as compared with state of the art community detection algorithms

    On Efficiently Detecting Overlapping Communities over Distributed Dynamic Graphs

    Full text link
    Modern networks are of huge sizes as well as high dynamics, which challenges the efficiency of community detection algorithms. In this paper, we study the problem of overlapping community detection on distributed and dynamic graphs. Given a distributed, undirected and unweighted graph, the goal is to detect overlapping communities incrementally as the graph is dynamically changing. We propose an efficient algorithm, called \textit{randomized Speaker-Listener Label Propagation Algorithm} (rSLPA), based on the \textit{Speaker-Listener Label Propagation Algorithm} (SLPA) by relaxing the probability distribution of label propagation. Besides detecting high-quality communities, rSLPA can incrementally update the detected communities after a batch of edge insertion and deletion operations. To the best of our knowledge, rSLPA is the first algorithm that can incrementally capture the same communities as those obtained by applying the detection algorithm from the scratch on the updated graph. Extensive experiments are conducted on both synthetic and real-world datasets, and the results show that our algorithm can achieve high accuracy and efficiency at the same time.Comment: A short version of this paper will be published as ICDE'2018 poste

    Community detection with spiking neural networks for neuromorphic hardware

    Full text link
    We present results related to the performance of an algorithm for community detection which incorporates event-driven computation. We define a mapping which takes a graph G to a system of spiking neurons. Using a fully connected spiking neuron system, with both inhibitory and excitatory synaptic connections, the firing patterns of neurons within the same community can be distinguished from firing patterns of neurons in different communities. On a random graph with 128 vertices and known community structure we show that by using binary decoding and a Hamming-distance based metric, individual communities can be identified from spike train similarities. Using bipolar decoding and finite rate thresholding, we verify that inhibitory connections prevent the spread of spiking patterns.Comment: Conference paper presented at ORNL Neuromorphic Workshop 2017, 7 pages, 6 figure
    • …
    corecore