3,446 research outputs found

    Faster Algorithms for Weighted Recursive State Machines

    Full text link
    Pushdown systems (PDSs) and recursive state machines (RSMs), which are linearly equivalent, are standard models for interprocedural analysis. Yet RSMs are more convenient as they (a) explicitly model function calls and returns, and (b) specify many natural parameters for algorithmic analysis, e.g., the number of entries and exits. We consider a general framework where RSM transitions are labeled from a semiring and path properties are algebraic with semiring operations, which can model, e.g., interprocedural reachability and dataflow analysis problems. Our main contributions are new algorithms for several fundamental problems. As compared to a direct translation of RSMs to PDSs and the best-known existing bounds of PDSs, our analysis algorithm improves the complexity for finite-height semirings (that subsumes reachability and standard dataflow properties). We further consider the problem of extracting distance values from the representation structures computed by our algorithm, and give efficient algorithms that distinguish the complexity of a one-time preprocessing from the complexity of each individual query. Another advantage of our algorithm is that our improvements carry over to the concurrent setting, where we improve the best-known complexity for the context-bounded analysis of concurrent RSMs. Finally, we provide a prototype implementation that gives a significant speed-up on several benchmarks from the SLAM/SDV project

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    A B\"uchi-Elgot-Trakhtenbrot theorem for automata with MSO graph storage

    Full text link
    We introduce MSO graph storage types, and call a storage type MSO-expressible if it is isomorphic to some MSO graph storage type. An MSO graph storage type has MSO-definable sets of graphs as storage configurations and as storage transformations. We consider sequential automata with MSO graph storage and associate with each such automaton a string language (in the usual way) and a graph language; a graph is accepted by the automaton if it represents a correct sequence of storage configurations for a given input string. For each MSO graph storage type, we define an MSO logic which is a subset of the usual MSO logic on graphs. We prove a B\"uchi-Elgot-Trakhtenbrot theorem, both for the string case and the graph case. Moreover, we prove that (i) each MSO graph transduction can be used as storage transformation in an MSO graph storage type, (ii) every automatic storage type is MSO-expressible, and (iii) the pushdown operator on storage types preserves the property of MSO-expressibility. Thus, the iterated pushdown storage types are MSO-expressible

    Comparing Map Calculus and Map Algebra in Dynamic GIS

    Get PDF

    Synthesis and Stochastic Assessment of Cost-Optimal Schedules

    Get PDF
    We present a novel approach to synthesize good schedules for a class of scheduling problems that is slightly more general than the scheduling problem FJm,a|gpr,r_j,d_j|early/tardy. The idea is to prime the schedule synthesizer with stochastic information more meaningful than performance factors with the objective to minimize the expected cost caused by storage or delay. The priming information is obtained by stochastic simulation of the system environment. The generated schedules are assessed again by simulation. The approach is demonstrated by means of a non-trivial scheduling problem from lacquer production. The experimental results show that our approach achieves in all considered scenarios better results than the extended processing times approach
    • …
    corecore