45,784 research outputs found

    On Weighted Low-Rank Approximation

    Full text link
    Our main interest is the low-rank approximation of a matrix in R^m.n under a weighted Frobenius norm. This norm associates a weight to each of the (m x n) matrix entries. We conjecture that the number of approximations is at most min(m, n). We also investigate how the approximations depend on the weight-values.Comment: 13 page

    Far-Field Compression for Fast Kernel Summation Methods in High Dimensions

    Full text link
    We consider fast kernel summations in high dimensions: given a large set of points in dd dimensions (with d≫3d \gg 3) and a pair-potential function (the {\em kernel} function), we compute a weighted sum of all pairwise kernel interactions for each point in the set. Direct summation is equivalent to a (dense) matrix-vector multiplication and scales quadratically with the number of points. Fast kernel summation algorithms reduce this cost to log-linear or linear complexity. Treecodes and Fast Multipole Methods (FMMs) deliver tremendous speedups by constructing approximate representations of interactions of points that are far from each other. In algebraic terms, these representations correspond to low-rank approximations of blocks of the overall interaction matrix. Existing approaches require an excessive number of kernel evaluations with increasing dd and number of points in the dataset. To address this issue, we use a randomized algebraic approach in which we first sample the rows of a block and then construct its approximate, low-rank interpolative decomposition. We examine the feasibility of this approach theoretically and experimentally. We provide a new theoretical result showing a tighter bound on the reconstruction error from uniformly sampling rows than the existing state-of-the-art. We demonstrate that our sampling approach is competitive with existing (but prohibitively expensive) methods from the literature. We also construct kernel matrices for the Laplacian, Gaussian, and polynomial kernels -- all commonly used in physics and data analysis. We explore the numerical properties of blocks of these matrices, and show that they are amenable to our approach. Depending on the data set, our randomized algorithm can successfully compute low rank approximations in high dimensions. We report results for data sets with ambient dimensions from four to 1,000.Comment: 43 pages, 21 figure

    Optimal low-rank approximations of Bayesian linear inverse problems

    Full text link
    In the Bayesian approach to inverse problems, data are often informative, relative to the prior, only on a low-dimensional subspace of the parameter space. Significant computational savings can be achieved by using this subspace to characterize and approximate the posterior distribution of the parameters. We first investigate approximation of the posterior covariance matrix as a low-rank update of the prior covariance matrix. We prove optimality of a particular update, based on the leading eigendirections of the matrix pencil defined by the Hessian of the negative log-likelihood and the prior precision, for a broad class of loss functions. This class includes the F\"{o}rstner metric for symmetric positive definite matrices, as well as the Kullback-Leibler divergence and the Hellinger distance between the associated distributions. We also propose two fast approximations of the posterior mean and prove their optimality with respect to a weighted Bayes risk under squared-error loss. These approximations are deployed in an offline-online manner, where a more costly but data-independent offline calculation is followed by fast online evaluations. As a result, these approximations are particularly useful when repeated posterior mean evaluations are required for multiple data sets. We demonstrate our theoretical results with several numerical examples, including high-dimensional X-ray tomography and an inverse heat conduction problem. In both of these examples, the intrinsic low-dimensional structure of the inference problem can be exploited while producing results that are essentially indistinguishable from solutions computed in the full space

    A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems

    Full text link
    In this paper, we propose a method for the approximation of the solution of high-dimensional weakly coercive problems formulated in tensor spaces using low-rank approximation formats. The method can be seen as a perturbation of a minimal residual method with residual norm corresponding to the error in a specified solution norm. We introduce and analyze an iterative algorithm that is able to provide a controlled approximation of the optimal approximation of the solution in a given low-rank subset, without any a priori information on this solution. We also introduce a weak greedy algorithm which uses this perturbed minimal residual method for the computation of successive greedy corrections in small tensor subsets. We prove its convergence under some conditions on the parameters of the algorithm. The residual norm can be designed such that the resulting low-rank approximations are quasi-optimal with respect to particular norms of interest, thus yielding to goal-oriented order reduction strategies for the approximation of high-dimensional problems. The proposed numerical method is applied to the solution of a stochastic partial differential equation which is discretized using standard Galerkin methods in tensor product spaces

    Frequency-Weighted Model Reduction with Applications to Structured Models

    Get PDF
    In this paper, a frequency-weighted extension of a recently proposed model reduction method for linear systems is presented. The method uses convex optimization and can be used both with sample data and exact models. We also obtain bounds on the frequency-weighted error. The method is combined with a rank-minimization heuristic to approximate multiinput– multi-output systems.We also present two applications— environment compensation and simplification of interconnected models — where we argue the proposed methods are useful

    Tighter Low-rank Approximation via Sampling the Leveraged Element

    Get PDF
    In this work, we propose a new randomized algorithm for computing a low-rank approximation to a given matrix. Taking an approach different from existing literature, our method first involves a specific biased sampling, with an element being chosen based on the leverage scores of its row and column, and then involves weighted alternating minimization over the factored form of the intended low-rank matrix, to minimize error only on these samples. Our method can leverage input sparsity, yet produce approximations in {\em spectral} (as opposed to the weaker Frobenius) norm; this combines the best aspects of otherwise disparate current results, but with a dependence on the condition number Îș=σ1/σr\kappa = \sigma_1/\sigma_r. In particular we require O(nnz(M)+nÎș2r5Ï”2)O(nnz(M) + \frac{n\kappa^2 r^5}{\epsilon^2}) computations to generate a rank-rr approximation to MM in spectral norm. In contrast, the best existing method requires O(nnz(M)+nr2Ï”4)O(nnz(M)+ \frac{nr^2}{\epsilon^4}) time to compute an approximation in Frobenius norm. Besides the tightness in spectral norm, we have a better dependence on the error Ï”\epsilon. Our method is naturally and highly parallelizable. Our new approach enables two extensions that are interesting on their own. The first is a new method to directly compute a low-rank approximation (in efficient factored form) to the product of two given matrices; it computes a small random set of entries of the product, and then executes weighted alternating minimization (as before) on these. The sampling strategy is different because now we cannot access leverage scores of the product matrix (but instead have to work with input matrices). The second extension is an improved algorithm with smaller communication complexity for the distributed PCA setting (where each server has small set of rows of the matrix, and want to compute low rank approximation with small amount of communication with other servers).Comment: 36 pages, 3 figures, Extended abstract to appear in the proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA15
    • 

    corecore