1,455 research outputs found

    An Analysis of the Value of Information when Exploring Stochastic, Discrete Multi-Armed Bandits

    Full text link
    In this paper, we propose an information-theoretic exploration strategy for stochastic, discrete multi-armed bandits that achieves optimal regret. Our strategy is based on the value of information criterion. This criterion measures the trade-off between policy information and obtainable rewards. High amounts of policy information are associated with exploration-dominant searches of the space and yield high rewards. Low amounts of policy information favor the exploitation of existing knowledge. Information, in this criterion, is quantified by a parameter that can be varied during search. We demonstrate that a simulated-annealing-like update of this parameter, with a sufficiently fast cooling schedule, leads to an optimal regret that is logarithmic with respect to the number of episodes.Comment: Entrop

    Strategies for prediction under imperfect monitoring

    Full text link
    We propose simple randomized strategies for sequential prediction under imperfect monitoring, that is, when the forecaster does not have access to the past outcomes but rather to a feedback signal. The proposed strategies are consistent in the sense that they achieve, asymptotically, the best possible average reward. It was Rustichini (1999) who first proved the existence of such consistent predictors. The forecasters presented here offer the first constructive proof of consistency. Moreover, the proposed algorithms are computationally efficient. We also establish upper bounds for the rates of convergence. In the case of deterministic feedback, these rates are optimal up to logarithmic terms.Comment: Journal version of a COLT conference pape

    Spectrum Bandit Optimization

    Full text link
    We consider the problem of allocating radio channels to links in a wireless network. Links interact through interference, modelled as a conflict graph (i.e., two interfering links cannot be simultaneously active on the same channel). We aim at identifying the channel allocation maximizing the total network throughput over a finite time horizon. Should we know the average radio conditions on each channel and on each link, an optimal allocation would be obtained by solving an Integer Linear Program (ILP). When radio conditions are unknown a priori, we look for a sequential channel allocation policy that converges to the optimal allocation while minimizing on the way the throughput loss or {\it regret} due to the need for exploring sub-optimal allocations. We formulate this problem as a generic linear bandit problem, and analyze it first in a stochastic setting where radio conditions are driven by a stationary stochastic process, and then in an adversarial setting where radio conditions can evolve arbitrarily. We provide new algorithms in both settings and derive upper bounds on their regrets.Comment: 21 page
    • …
    corecore