1,853 research outputs found

    The weight enumerator polynomials of the lifted codes of the projective Solomon-Stiffler codes

    Full text link
    Determining the weight distribution of a code is an old and fundamental topic in coding theory that has been thoroughly studied. In 1977, Helleseth, Kl{\o}ve, and Mykkeltveit presented a weight enumerator polynomial of the lifted code over Fqâ„“\mathbb{F}_{q^\ell} of a qq-ary linear code with significant combinatorial properties, which can determine the support weight distribution of this linear code. The Solomon-Stiffler codes are a family of famous Griesmer codes, which were proposed by Solomon and Stiffler in 1965. In this paper, we determine the weight enumerator polynomials of the lifted codes of the projective Solomon-Stiffler codes using some combinatorial properties of subspaces. As a result, we determine the support weight distributions of the projective Solomon-Stiffler codes. In particular, we determine the weight hierarchies of the projective Solomon-Stiffler codes.Comment: This manuscript was first submitted on September 9, 202

    The Weight Hierarchies of Linear Codes from Simplicial Complexes

    Full text link
    The study of the generalized Hamming weight of linear codes is a significant research topic in coding theory as it conveys the structural information of the codes and determines their performance in various applications. However, determining the generalized Hamming weights of linear codes, especially the weight hierarchy, is generally challenging. In this paper, we investigate the generalized Hamming weights of a class of linear code \C over \bF_q, which is constructed from defining sets. These defining sets are either special simplicial complexes or their complements in \bF_q^m. We determine the complete weight hierarchies of these codes by analyzing the maximum or minimum intersection of certain simplicial complexes and all rr-dimensional subspaces of \bF_q^m, where 1\leq r\leq {\rm dim}_{\bF_q}(\C)

    Polynomial integrality gaps for strong SDP relaxations of Densest k

    Full text link
    The Densest k-subgraph problem (i.e. find a size k subgraph with maximum number of edges), is one of the notorious problems in approximation algorithms. There is a significant gap between known upper and lower bounds for Densest k-subgraph: the current best algorithm gives an ≈ O(n 1/4) approximation, while even showing a small constant factor hardness requires significantly stronger assumptions than P ̸ = NP. In addition to interest in designing better algorithms, a number of recent results have exploited the conjectured hardness of Densest k-subgraph and its variants. Thus, understanding the approximability of Densest k-subgraph is an important challenge. In this work, we give evidence for the hardness of approximating Densest k-subgraph within polynomial factors. Specifically, we expose the limitations of strong semidefinite programs from SDP hierarchies in solving Densest k-subgraph. Our results include: • A lower bound of Ω ( n 1/4 / log 3 n) on the integrality gap for Ω(log n / log log n) rounds of the Sherali-Adams relaxation for Densest k-subgraph. This also holds for the relaxation obtained from Sherali-Adams with an added SDP constraint. Our gap instances are i

    On Universal Prediction and Bayesian Confirmation

    Get PDF
    The Bayesian framework is a well-studied and successful framework for inductive reasoning, which includes hypothesis testing and confirmation, parameter estimation, sequence prediction, classification, and regression. But standard statistical guidelines for choosing the model class and prior are not always available or fail, in particular in complex situations. Solomonoff completed the Bayesian framework by providing a rigorous, unique, formal, and universal choice for the model class and the prior. We discuss in breadth how and in which sense universal (non-i.i.d.) sequence prediction solves various (philosophical) problems of traditional Bayesian sequence prediction. We show that Solomonoff's model possesses many desirable properties: Strong total and weak instantaneous bounds, and in contrast to most classical continuous prior densities has no zero p(oste)rior problem, i.e. can confirm universal hypotheses, is reparametrization and regrouping invariant, and avoids the old-evidence and updating problem. It even performs well (actually better) in non-computable environments.Comment: 24 page

    2D growth processes: SLE and Loewner chains

    Full text link
    This review provides an introduction to two dimensional growth processes. Although it covers a variety processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the SLE remarkable properties are explained, as well as the tools for computing with SLE. This review has been written with the aim of filling the gap between the mathematical and the physical literatures on the subject.Comment: A review on Stochastic Loewner evolutions for Physics Reports, 172 pages, low quality figures, better quality figures upon request to the authors, comments welcom

    Acta Cybernetica : Volume 19. Number 2.

    Get PDF
    • …
    corecore