3 research outputs found

    Scalar Quantization as Sparse Least Square Optimization

    Full text link
    Quantization can be used to form new vectors/matrices with shared values close to the original. In recent years, the popularity of scalar quantization for value-sharing applications has been soaring as it has been found huge utilities in reducing the complexity of neural networks. Existing clustering-based quantization techniques, while being well-developed, have multiple drawbacks including the dependency of the random seed, empty or out-of-the-range clusters, and high time complexity for a large number of clusters. To overcome these problems, in this paper, the problem of scalar quantization is examined from a new perspective, namely sparse least square optimization. Specifically, inspired by the property of sparse least square regression, several quantization algorithms based on l1l_1 least square are proposed. In addition, similar schemes with l1+l2l_1 + l_2 and l0l_0 regularization are proposed. Furthermore, to compute quantization results with a given amount of values/clusters, this paper designed an iterative method and a clustering-based method, and both of them are built on sparse least square. The paper shows that the latter method is mathematically equivalent to an improved version of k-means clustering-based quantization algorithm, although the two algorithms originated from different intuitions. The algorithms proposed were tested with three types of data and their computational performances, including information loss, time consumption, and the distribution of the values of the sparse vectors, were compared and analyzed. The paper offers a new perspective to probe the area of quantization, and the algorithms proposed can outperform existing methods especially under some bit-width reduction scenarios, when the required post-quantization resolution (number of values) is not significantly lower than the original number

    Weight Quantization for Multi-Layer Perceptrons using Soft-Weight Sharing

    No full text
    We propose a novel approach for quantizing the weights of a multi-layer perceptron for ecient VLSI implementation. Our approach uses soft-weight sharing, previously proposed for improved generalization and considers the weights not as constant numbers but as random variables drawn from a Gaussian mixture distribution; which includes as its special cases k-means clustering and uniform quantization. This approach couples the training of weights for reduced error with their quantization. Simulations on synthetic and real regression and classi- cation data sets compare various quantization schemes and demonstrate the advantage of the coupled training of distribution parameters.
    corecore