10 research outputs found

    Wedge Sampling for Computing Clustering Coefficients and Triangle Counts on Large Graphs

    Full text link
    Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of such graphs. Some of the most useful graph metrics are based on triangles, such as those measuring social cohesion. Algorithms to compute them can be extremely expensive, even for moderately-sized graphs with only millions of edges. Previous work has considered node and edge sampling; in contrast, we consider wedge sampling, which provides faster and more accurate approximations than competing techniques. Additionally, wedge sampling enables estimation local clustering coefficients, degree-wise clustering coefficients, uniform triangle sampling, and directed triangle counts. Our methods come with provable and practical probabilistic error estimates for all computations. We provide extensive results that show our methods are both more accurate and faster than state-of-the-art alternatives.Comment: Full version of SDM 2013 paper "Triadic Measures on Graphs: The Power of Wedge Sampling" (arxiv:1202.5230

    Beyond Triangles: A Distributed Framework for Estimating 3-profiles of Large Graphs

    Full text link
    We study the problem of approximating the 33-profile of a large graph. 33-profiles are generalizations of triangle counts that specify the number of times a small graph appears as an induced subgraph of a large graph. Our algorithm uses the novel concept of 33-profile sparsifiers: sparse graphs that can be used to approximate the full 33-profile counts for a given large graph. Further, we study the problem of estimating local and ego 33-profiles, two graph quantities that characterize the local neighborhood of each vertex of a graph. Our algorithm is distributed and operates as a vertex program over the GraphLab PowerGraph framework. We introduce the concept of edge pivoting which allows us to collect 22-hop information without maintaining an explicit 22-hop neighborhood list at each vertex. This enables the computation of all the local 33-profiles in parallel with minimal communication. We test out implementation in several experiments scaling up to 640640 cores on Amazon EC2. We find that our algorithm can estimate the 33-profile of a graph in approximately the same time as triangle counting. For the harder problem of ego 33-profiles, we introduce an algorithm that can estimate profiles of hundreds of thousands of vertices in parallel, in the timescale of minutes.Comment: To appear in part at KDD'1

    Graph Sample and Hold: A Framework for Big-Graph Analytics

    Full text link
    Sampling is a standard approach in big-graph analytics; the goal is to efficiently estimate the graph properties by consulting a sample of the whole population. A perfect sample is assumed to mirror every property of the whole population. Unfortunately, such a perfect sample is hard to collect in complex populations such as graphs (e.g. web graphs, social networks etc), where an underlying network connects the units of the population. Therefore, a good sample will be representative in the sense that graph properties of interest can be estimated with a known degree of accuracy. While previous work focused particularly on sampling schemes used to estimate certain graph properties (e.g. triangle count), much less is known for the case when we need to estimate various graph properties with the same sampling scheme. In this paper, we propose a generic stream sampling framework for big-graph analytics, called Graph Sample and Hold (gSH). To begin, the proposed framework samples from massive graphs sequentially in a single pass, one edge at a time, while maintaining a small state. We then show how to produce unbiased estimators for various graph properties from the sample. Given that the graph analysis algorithms will run on a sample instead of the whole population, the runtime complexity of these algorithm is kept under control. Moreover, given that the estimators of graph properties are unbiased, the approximation error is kept under control. Finally, we show the performance of the proposed framework (gSH) on various types of graphs, such as social graphs, among others

    The Power of Pivoting for Exact Clique Counting

    Full text link
    Clique counting is a fundamental task in network analysis, and even the simplest setting of 33-cliques (triangles) has been the center of much recent research. Getting the count of kk-cliques for larger kk is algorithmically challenging, due to the exponential blowup in the search space of large cliques. But a number of recent applications (especially for community detection or clustering) use larger clique counts. Moreover, one often desires \textit{local} counts, the number of kk-cliques per vertex/edge. Our main result is Pivoter, an algorithm that exactly counts the number of kk-cliques, \textit{for all values of kk}. It is surprisingly effective in practice, and is able to get clique counts of graphs that were beyond the reach of previous work. For example, Pivoter gets all clique counts in a social network with a 100M edges within two hours on a commodity machine. Previous parallel algorithms do not terminate in days. Pivoter can also feasibly get local per-vertex and per-edge kk-clique counts (for all kk) for many public data sets with tens of millions of edges. To the best of our knowledge, this is the first algorithm that achieves such results. The main insight is the construction of a Succinct Clique Tree (SCT) that stores a compressed unique representation of all cliques in an input graph. It is built using a technique called \textit{pivoting}, a classic approach by Bron-Kerbosch to reduce the recursion tree of backtracking algorithms for maximal cliques. Remarkably, the SCT can be built without actually enumerating all cliques, and provides a succinct data structure from which exact clique statistics (kk-clique counts, local counts) can be read off efficiently.Comment: 10 pages, WSDM 202
    corecore