1,918 research outputs found

    Intelligent Adaptive Curiosity: a source of Self-Development

    Get PDF
    This paper presents the mechanism of Intelligent Adaptive Curiosity. This is a drive which pushes the robot towards situations in which it maximizes its learning progress. It makes the robot focus on situations which are neither too predictable nor too unpredictable. This mechanism is a source of self-development for the robot: the complexity of its activity autonomously increases. Indeed, we show that it first spends time in situations which are easy to learn, then shifts progressively its attention to situations of increasing difficulty, avoiding situations in which nothing can be learnt

    Topological Navigation of Simulated Robots using Occupancy Grid

    Full text link
    Formerly I presented a metric navigation method in the Webots mobile robot simulator. The navigating Khepera-like robot builds an occupancy grid of the environment and explores the square-shaped room around with a value iteration algorithm. Now I created a topological navigation procedure based on the occupancy grid process. The extension by a skeletonization algorithm results a graph of important places and the connecting routes among them. I also show the significant time profit gained during the process

    Fast Simulation of Vehicles with Non-deformable Tracks

    Full text link
    This paper presents a novel technique that allows for both computationally fast and sufficiently plausible simulation of vehicles with non-deformable tracks. The method is based on an effect we have called Contact Surface Motion. A comparison with several other methods for simulation of tracked vehicle dynamics is presented with the aim to evaluate methods that are available off-the-shelf or with minimum effort in general-purpose robotics simulators. The proposed method is implemented as a plugin for the open-source physics-based simulator Gazebo using the Open Dynamics Engine.Comment: Submitted to IROS 201

    An Idiotypic Immune Network as a Short Term Learning Architecture for Mobile Robots

    Get PDF
    A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile robot navigation problems is presented and tested in both real and simulated environments. The LTL consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours. These sets are then transferred to an idiotypic Artificial Immune System (AIS), which forms the STL phase, and the system is said to be seeded. The combined LTL-STL approach is compared with using STL only, and with using a handdesigned controller. In addition, the STL phase is tested when the idiotypic mechanism is turned off. The results provide substantial evidence that the best option is the seeded idiotypic system, i.e. the architecture that merges LTL with an idiotypic AIS for the STL. They also show that structurally different environments can be used for the two phases without compromising transferabilityComment: 13 pages, 5 tables, 4 figures, 7th International Conference on Artificial Immune Systems (ICARIS2008), Phuket, Thailan
    corecore