89,238 research outputs found

    SimScene : a web-based acoustic scenes simulator

    Get PDF
    International audienceWe introduce in this paper a soundscape simulator called SimScene, designed to be used as an experimental tool to characterize the mental representation of sound environments. The soundscape simulator allows a subject to generate a full sonic environment by sequencing and mixing sound elements, and manipulating their sound level and time positioning. To make the simulation process effective, SimScene has not be designed to manipulate individual parameters of individ-ual sounds, but to specify high-level parameters for whole classes of sounds, organized into a hierarchical semantically structured dataset. To avoid any linguistic bias, a listening oriented interface allows subjects to explore the dataset with-out any text written help. The entire software is developed in Javascript using the standard Web Audio technology, and is thus fully supported by most modern web browsers. This fact should allow experimenters to adopt a crowdsourcing approach to experimentation in order to assess hypotheses on large populations, and facilitate the development of ex-perimental protocols to investigate the influence of socio-cultural background on soundscape perception

    Web-based CBR (case-based reasoning) as a tool with the application to tooling selection

    Get PDF
    Over the past few years, manufacturing companies have had to deal with an increasing demand for feature-rich products at low costs. The pressures exerted on their existing manufacturing processes have lead manufacturers to investigate internet-based solutions, in order to cope with growing competition. The decentralisation phenomenon also came up as a reason to implement networked-application, which has been the starting point for internet/intranet–based systems. Today, the availability of powerful and low cost 3D tools, database backend systems, along with web-based technologies, provides interesting opportunities to the manufacturing community, with solutions directly implementable at the core of their businesses and organisations. In this paper a web-based engineering approach is presented to developing a design support system using case-based reasoning (CBR) technology for helping in the decision-making process when choosing cutting tools. The system aims to provide on-line intelligent support for determining the most suitable configuration for turning operations, based on initial parameters and requirements for the cutting operation. The system also features a user-driven 3D turning simulator which allows testing the chosen insert for several turning operations. The system aims to be a useful e-manufacturing tool being able to quickly and responsively provide tooling data in a highly interactive way

    Towards the 3D Web with Open Simulator

    Get PDF
    Continuing advances and reduced costs in computational power, graphics processors and network bandwidth have led to 3D immersive multi-user virtual worlds becoming increasingly accessible while offering an improved and engaging Quality of Experience. At the same time the functionality of the World Wide Web continues to expand alongside the computing infrastructure it runs on and pages can now routinely accommodate many forms of interactive multimedia components as standard features - streaming video for example. Inevitably there is an emerging expectation that the Web will expand further to incorporate immersive 3D environments. This is exciting because humans are well adapted to operating in 3D environments and it is challenging because existing software and skill sets are focused around competencies in 2D Web applications. Open Simulator (OpenSim) is a freely available open source tool-kit that empowers users to create and deploy their own 3D environments in the same way that anyone can create and deploy a Web site. Its characteristics can be seen as a set of references as to how the 3D Web could be instantiated. This paper describes experiments carried out with OpenSim to better understand network and system issues, and presents experience in using OpenSim to develop and deliver applications for education and cultural heritage. Evaluation is based upon observations of these applications in use and measurements of systems both in the lab and in the wild

    Towards a lightweight generic computational grid framework for biological research

    Get PDF
    Background: An increasing number of scientific research projects require access to large-scale computational resources. This is particularly true in the biological field, whether to facilitate the analysis of large high-throughput data sets, or to perform large numbers of complex simulations – a characteristic of the emerging field of systems biology. Results: In this paper we present a lightweight generic framework for combining disparate computational resources at multiple sites (ranging from local computers and clusters to established national Grid services). A detailed guide describing how to set up the framework is available from the following URL: http://igrid-ext.cryst.bbk.ac.uk/portal_guide/. Conclusion: This approach is particularly (but not exclusively) appropriate for large-scale biology projects with multiple collaborators working at different national or international sites. The framework is relatively easy to set up, hides the complexity of Grid middleware from the user, and provides access to resources through a single, uniform interface. It has been developed as part of the European ImmunoGrid project
    corecore