76,793 research outputs found
A Model for Personalized Keyword Extraction from Web Pages using Segmentation
The World Wide Web caters to the needs of billions of users in heterogeneous
groups. Each user accessing the World Wide Web might have his / her own
specific interest and would expect the web to respond to the specific
requirements. The process of making the web to react in a customized manner is
achieved through personalization. This paper proposes a novel model for
extracting keywords from a web page with personalization being incorporated
into it. The keyword extraction problem is approached with the help of web page
segmentation which facilitates in making the problem simpler and solving it
effectively. The proposed model is implemented as a prototype and the
experiments conducted on it empirically validate the model's efficiency.Comment: 6 Pages, 2 Figure
Context Models For Web Search Personalization
We present our solution to the Yandex Personalized Web Search Challenge. The
aim of this challenge was to use the historical search logs to personalize
top-N document rankings for a set of test users. We used over 100 features
extracted from user- and query-depended contexts to train neural net and
tree-based learning-to-rank and regression models. Our final submission, which
was a blend of several different models, achieved an NDCG@10 of 0.80476 and
placed 4'th amongst the 194 teams winning 3'rd prize
Personalization via collaboration in web retrieval systems: a context based approach
World Wide Web is a source of information, and searches on the Web can be analyzed to detect patterns in Web users' search behaviors and information needs to effectively handle the users' subsequent needs. The rationale is that the information need of a user at a particular time point occurs in a particular context, and queries are derived from that need. In this paper, we discuss an extension of our personalization approach that was originally developed for a traditional bibliographic retrieval system but has been adapted and extended with a collaborative model for the Web retrieval environment. We start with a brief introduction of our personalization approach in a traditional information retrieval system. Then, based on the differences in the nature of documents, users and search tasks between traditional and Web retrieval environments, we describe our extensions of integrating collaboration in personalization in the Web retrieval environment. The architecture for the extension integrates machine learning techniques for the purpose of better modeling users' search tasks. Finally, a user-oriented evaluation of Web-based adaptive retrieval systems is presented as an important aspect of the overall strategy for personalization
SemWeB Semantic Web Browser – Improving Browsing Experience with Semantic and Personalized Information and Hyperlinks
Imagine a Web browser that can understand the context of a Web page and recommends related semantic hyperlinks in any Web domain. In addition, imagine this browser also understands your browsing needs and personalizes information for you. The aim of our research is to achieve this in open Web environment using Semantic Web technologies and adaptive hypermedia techniques. In this paper, we discuss a novel Semantic Web browser, SemWeB, which utilizes linked data for context-based hyperlink recommendation and uses a behavior-based and an ontology-driven user modeling architecture for personalization on Web documents. The aim of this research is to bring the gap between the technology and user needs using Semantic Web technologies in Web browsing
Personalization in cultural heritage: the road travelled and the one ahead
Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge
technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user
(e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed
The Partial Evaluation Approach to Information Personalization
Information personalization refers to the automatic adjustment of information
content, structure, and presentation tailored to an individual user. By
reducing information overload and customizing information access,
personalization systems have emerged as an important segment of the Internet
economy. This paper presents a systematic modeling methodology - PIPE
(`Personalization is Partial Evaluation') - for personalization.
Personalization systems are designed and implemented in PIPE by modeling an
information-seeking interaction in a programmatic representation. The
representation supports the description of information-seeking activities as
partial information and their subsequent realization by partial evaluation, a
technique for specializing programs. We describe the modeling methodology at a
conceptual level and outline representational choices. We present two
application case studies that use PIPE for personalizing web sites and describe
how PIPE suggests a novel evaluation criterion for information system designs.
Finally, we mention several fundamental implications of adopting the PIPE model
for personalization and when it is (and is not) applicable.Comment: Comprehensive overview of the PIPE model for personalizatio
Multimedia Chinese Web Search Engines: A Survey
The objective of this paper is to explore the state of multimedia search functionality on major general and dedicated Web search engines in Chinese language. The authors studied: a) how many Chinese Web search engines presently make use of multimedia searching, and b) the type of multimedia search functionality available. Specifically, the following were examined: a) multimedia features - features allowing multimedia search; and b) extent of personalization - the extent to which a search engine Web site allows users to control multimedia search. Overall, Chinese Web search engines offer limited multimedia searching functionality. The significance of the study is based on two factors: a) little research has been conducted on Chinese Web search engines, and b) the instrument used in the study and the results obtained by this research could help users, Web designers, and Web search engine developers. By large, general Web search engines support more multimedia features than specialized one
- …
