785 research outputs found

    Extraction of Keyphrases from Text: Evaluation of Four Algorithms

    Get PDF
    This report presents an empirical evaluation of four algorithms for automatically extracting keywords and keyphrases from documents. The four algorithms are compared using five different collections of documents. For each document, we have a target set of keyphrases, which were generated by hand. The target keyphrases were generated for human readers; they were not tailored for any of the four keyphrase extraction algorithms. Each of the algorithms was evaluated by the degree to which the algorithm’s keyphrases matched the manually generated keyphrases. The four algorithms were (1) the AutoSummarize feature in Microsoft’s Word 97, (2) an algorithm based on Eric Brill’s part-of-speech tagger, (3) the Summarize feature in Verity’s Search 97, and (4) NRC’s Extractor algorithm. For all five document collections, NRC’s Extractor yields the best match with the manually generated keyphrases

    Coherent Keyphrase Extraction via Web Mining

    Full text link
    Keyphrases are useful for a variety of purposes, including summarizing, indexing, labeling, categorizing, clustering, highlighting, browsing, and searching. The task of automatic keyphrase extraction is to select keyphrases from within the text of a given document. Automatic keyphrase extraction makes it feasible to generate keyphrases for the huge number of documents that do not have manually assigned keyphrases. A limitation of previous keyphrase extraction algorithms is that the selected keyphrases are occasionally incoherent. That is, the majority of the output keyphrases may fit together well, but there may be a minority that appear to be outliers, with no clear semantic relation to the majority or to each other. This paper presents enhancements to the Kea keyphrase extraction algorithm that are designed to increase the coherence of the extracted keyphrases. The approach is to use the degree of statistical association among candidate keyphrases as evidence that they may be semantically related. The statistical association is measured using web mining. Experiments demonstrate that the enhancements improve the quality of the extracted keyphrases. Furthermore, the enhancements are not domain-specific: the algorithm generalizes well when it is trained on one domain (computer science documents) and tested on another (physics documents).Comment: 6 pages, related work available at http://purl.org/peter.turney

    Mining the Web for Lexical Knowledge to Improve Keyphrase Extraction: Learning from Labeled and Unlabeled Data.

    Get PDF
    A journal article is often accompanied by a list of keyphrases, composed of about five to fifteen important words and phrases that capture the article’s main topics. Keyphrases are useful for a variety of purposes, including summarizing, indexing, labeling, categorizing, clustering, highlighting, browsing, and searching. The task of automatic keyphrase extraction is to select keyphrases from within the text of a given document. Automatic keyphrase extraction makes it feasible to generate keyphrases for the huge number of documents that do not have manually assigned keyphrases. Good performance on this task has been obtained by approaching it as a supervised learning problem. An input document is treated as a set of candidate phrases that must be classified as either keyphrases or non-keyphrases. To classify a candidate phrase as a keyphrase, the most important features (attributes) appear to be the frequency and location of the candidate phrase in the document. Recent work has demonstrated that it is also useful to know the frequency of the candidate phrase as a manually assigned keyphrase for other documents in the same domain as the given document (e.g., the domain of computer science). Unfortunately, this keyphrase-frequency feature is domain-specific (the learning process must be repeated for each new domain) and training-intensive (good performance requires a relatively large number of training documents in the given domain, with manually assigned keyphrases). The aim of the work described here is to remove these limitations. In this paper, I introduce new features that are conceptually related to keyphrase-frequency and I present experiments that show that the new features result in improved keyphrase extraction, although they are neither domain-specific nor training-intensive. The new features are generated by issuing queries to a Web search engine, based on the candidate phrases in the input document. The feature values are calculated from the number of hits for the queries (the number of matching Web pages). In essence, these new features are derived by mining lexical knowledge from a very large collection of unlabeled data, consisting of approximately 350 million Web pages without manually assigned keyphrases

    Human evaluation of Kea, an automatic keyphrasing system.

    Get PDF
    This paper describes an evaluation of the Kea automatic keyphrase extraction algorithm. Tools that automatically identify keyphrases are desirable because document keyphrases have numerous applications in digital library systems, but are costly and time consuming to manually assign. Keyphrase extraction algorithms are usually evaluated by comparison to author-specified keywords, but this methodology has several well-known shortcomings. The results presented in this paper are based on subjective evaluations of the quality and appropriateness of keyphrases by human assessors, and make a number of contributions. First, they validate previous evaluations of Kea that rely on author keywords. Second, they show Kea's performance is comparable to that of similar systems that have been evaluated by human assessors. Finally, they justify the use of author keyphrases as a performance metric by showing that authors generally choose good keywords

    KERT: Automatic Extraction and Ranking of Topical Keyphrases from Content-Representative Document Titles

    Full text link
    We introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase generation and ranking. By shifting from the unigram-centric traditional methods of unsupervised keyphrase extraction to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. We construct a topical keyphrase ranking function which implements the four criteria that represent high quality topical keyphrases (coverage, purity, phraseness, and completeness). The effectiveness of our approach is demonstrated on two collections of content-representative titles in the domains of Computer Science and Physics.Comment: 9 page
    corecore