186,228 research outputs found

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    Integrating web services into data intensive web sites

    Get PDF
    Designing web sites is a complex task. Ad-hoc rapid prototyping easily leads to unsatisfactory results, e.g. poor maintainability and extensibility. However, existing web design frameworks focus exclusively on data presentation: the development of specific functionalities is still achieved through low-level programming. In this paper we address this issue by describing our work on the integration of (semantic) web services into a web design framework, OntoWeaver. The resulting architecture, OntoWeaver-S, supports rapid prototyping of service centred data-intensive web sites, which allow access to remote web services. In particular, OntoWeaver-S is integrated with a comprehensive web service platform, IRS-II, for the specification, discovery, and execution of web services. Moreover, it employs a set of comprehensive site ontologies to model and represent all aspects of service-centred data-intensive web sites, and thus is able to offer high level support for the design and development process

    The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    Get PDF
    Background. 
The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community.

Description. 
SADI – Semantic Automated Discovery and Integration – is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services “stack”, SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers.

Conclusions.
SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behavior we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies

    Identification of Design Principles

    Get PDF
    This report identifies those design principles for a (possibly new) query and transformation language for the Web supporting inference that are considered essential. Based upon these design principles an initial strawman is selected. Scenarios for querying the Semantic Web illustrate the design principles and their reflection in the initial strawman, i.e., a first draft of the query language to be designed and implemented by the REWERSE working group I4

    A framework for deriving semantic web services

    Get PDF
    Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ā€˜ignoredā€™ aspect is the representation of the semantics underlying the services themselves as well as the ā€˜thingsā€™ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario

    A Shared Ontology Approach to Semantic Representation of BIM Data

    Get PDF
    Architecture, engineering, construction and facility management (AEC-FM) projects involve a large number of participants that must exchange information and combine their knowledge for successful completion of a project. Currently, most of the AEC-FM domains store their information about a project in text documents or use XML, relational, or object-oriented formats that make information integration difficult. The AEC-FM industry is not taking advantage of the full potential of the Semantic Web for streamlining sharing, connecting, and combining information from different domains. The Semantic Web is designed to solve the information integration problem by creating a web of structured and connected data that can be processed by machines. It allows combining information from different sources with different underlying schemas distributed over the Internet. In the Semantic Web, all data instances and data schema are stored in a graph data store, which makes it easy to merge data from different sources. This paper presents a shared ontology approach to semantic representation of building information. The semantic representation of building information facilitates finding and integrating building information distributed in several knowledge bases. A case study demonstrates the development of a semantic based building design knowledge base

    Semantic Web: Past, Now, Future

    Get PDF
    Semantic Web starts from late 90s as the original vision of the WWW inventor Tim Berners-Lee. The power of the Semantic Web lies in the potential for interoperability through some well-defined metadata in machine understandable way with logic reasoning support. Layered design principle in the Semantic Web paves the way for reuse. With the evolution of the Web, currently Web 2.0 provides scalable information sharing platform, while the Semantic Web adds valuable machine understandable metadata to enable efficient and automatic way of information sharing and cross-portal communication and collaboration. The combination of the Semantic Web with Web2.0 forms a new momentum for the next web weave coined as Web 3.0 in the New York Time. This talk will go through the footprints of the web evolution and highlights the semantics on the Web

    Semantic web technology to support learning about the semantic web

    Get PDF
    This paper describes ASPL, an Advanced Semantic Platform for Learning, designed using the Magpie framework with an aim to support students learning about the Semantic Web research area. We describe the evolution of ASPL and illustrate how we used the results from a formal evaluation of the initial system to re-design the user functionalities. The second version of ASPL semantically interprets the results provided by a non-semantic web mining tool and uses them to support various forms of semantics-assisted exploration, based on pedagogical strategies such as performing later reasoning steps and problem space filtering
    • ā€¦
    corecore