10,179 research outputs found

    Wearable devices for remote monitoring of hospitalized patients with COVID-19 in Vietnam

    Get PDF
    Patients with severe COVID-19 disease require monitoring with pulse oximetry as a minimal requirement. In many low- and middle- income countries, this has been challenging due to lack of staff and equipment. Wearable pulse oximeters potentially offer an attractive means to address this need, due to their low cost, battery operability and capacity for remote monitoring. Between July and October 2021, Ho Chi Minh City experienced its first major wave of SARS-CoV-2 infection, leading to an unprecedented demand for monitoring in hospitalized patients. We assess the feasibility of a continuous remote monitoring system for patients with COVID-19 under these circumstances as we implemented 2 different systems using wearable pulse oximeter devices in a stepwise manner across 4 departments

    Investigating the Use of Digital Health Technology to Monitor COVID-19 and Its Effects: Protocol for an Observational Study (Covid Collab Study)

    Get PDF
    BACKGROUND: The ubiquity of mobile phones and increasing use of wearable fitness trackers offer a wide-ranging window into people’s health and well-being. There are clear advantages in using remote monitoring technologies to gain an insight into health, particularly under the shadow of the COVID-19 pandemic. OBJECTIVE: Covid Collab is a crowdsourced study that was set up to investigate the feasibility of identifying, monitoring, and understanding the stratification of SARS-CoV-2 infection and recovery through remote monitoring technologies. Additionally, we will assess the impacts of the COVID-19 pandemic and associated social measures on people’s behavior, physical health, and mental well-being. METHODS: Participants will remotely enroll in the study through the Mass Science app to donate historic and prospective mobile phone data, fitness tracking wearable data, and regular COVID-19–related and mental health–related survey data. The data collection period will cover a continuous period (ie, both before and after any reported infections), so that comparisons to a participant’s own baseline can be made. We plan to carry out analyses in several areas, which will cover symptomatology; risk factors; the machine learning–based classification of illness; and trajectories of recovery, mental well-being, and activity. RESULTS: As of June 2021, there are over 17,000 participants—largely from the United Kingdom—and enrollment is ongoing. CONCLUSIONS: This paper introduces a crowdsourced study that will include remotely enrolled participants to record mobile health data throughout the COVID-19 pandemic. The data collected may help researchers investigate a variety of areas, including COVID-19 progression; mental well-being during the pandemic; and the adherence of remote, digitally enrolled participants. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/3258

    Wearable devices and IoT applications for symptom detection, infection tracking, and diffusion containment of the COVID-19 pandemic: a survey

    Get PDF
    Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Things (IoT) infrastructures, are valuable tools for containing the pandemic. In this review paper we analyze innovative wearable systems for limiting the virus spread, early detection of the first symptoms of the coronavirus disease COVID-19 infection, and remote monitoring of the health conditions of infected patients during the quarantine. The attention is focused on systems allowing quick user screening through ready-to-use hardware and software components. Such sensor-based systems monitor the principal vital signs, detect symptoms related to COVID-19 early, and alert patients and medical staff. Novel wearable devices for complying with social distancing rules and limiting interpersonal contagion (such as smart masks) are investigated and analyzed. In addition, an overview of implantable devices for monitoring the effects of COVID-19 on the cardiovascular system is presented. Then we report an overview of tracing strategies and technologies for containing the COVID-19 pandemic based on IoT technologies, wearable devices, and cloud computing. In detail, we demonstrate the potential of radio frequency based signal technology, including Bluetooth Low Energy (BLE), Wi-Fi, and radio frequency identification (RFID), often combined with Apps and cloud technology. Finally, critical analysis and comparisons of the different discussed solutions are presented, highlighting their potential and providing new insights for developing innovative tools for facing future pandemics

    A multimodel-based screening framework for C-19 using deep learning-inspired data fusion.

    Get PDF
    In recent times, there has been a notable rise in the utilization of Internet of Medical Things (IoMT) frameworks particularly those based on edge computing, to enhance remote monitoring in healthcare applications. Most existing models in this field have been developed temperature screening methods using RCNN, face temperature encoder (FTE), and a combination of data from wearable sensors for predicting respiratory rate (RR) and monitoring blood pressure. These methods aim to facilitate remote screening and monitoring of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and COVID-19. However, these models require inadequate computing resources and are not suitable for lightweight environments. We propose a multimodal screening framework that leverages deep learning-inspired data fusion models to enhance screening results. A Variation Encoder (VEN) design proposes to measure skin temperature using Regions of Interest (RoI) identified by YoLo. Subsequently, the multi-data fusion model integrates electronic records features with data from wearable human sensors. To optimize computational efficiency, a data reduction mechanism is added to eliminate unnecessary features. Furthermore, we employ a contingent probability method to estimate distinct feature weights for each cluster, deepening our understanding of variations in thermal and sensory data to assess the prediction of abnormal COVID-19 instances. Simulation results using our lab dataset demonstrate a precision of 95.2%, surpassing state-of-the-art models due to the thoughtful design of the multimodal data-based feature fusion model, weight prediction factor, and feature selection model
    corecore