4 research outputs found

    Stress evaluation in simulated autonomous and manual driving through the analysis of skin potential response and electrocardiogram signals

    Get PDF
    The evaluation of car drivers\u2019 stress condition is gaining interest as research on Autonomous Driving Systems (ADS) progresses. The analysis of the stress response can be used to assess the acceptability of ADS and to compare the driving styles of different autonomous drive algorithms. In this contribution, we present a system based on the analysis of the Electrodermal Activity Skin Potential Response (SPR) signal, aimed to reveal the driver\u2019s stress induced by different driving situations. We reduce motion artifacts by processing two SPR signals, recorded from the hands of the subjects, and outputting a single clean SPR signal. Statistical features of signal blocks are sent to a Supervised Learning Algorithm, which classifies between stress and normal driving (non-stress) conditions. We present the results obtained from an experiment using a professional driving simulator, where a group of people is asked to undergo manual and autonomous driving on a highway, facing some unexpected events meant to generate stress. The results of our experiment show that the subjects generally appear more stressed during manual driving, indicating that the autonomous drive can possibly be well received by the public. During autonomous driving, however, significant peaks of the SPR signal are evident during unexpected events. By examining the electrocardiogram signal, the average heart rate is generally higher in the manual case compared to the autonomous case. This further supports our previous findings, even if it may be due, in part, to the physical activity involved in manual driving

    A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks

    Get PDF
    Human emotions are integral to daily tasks, and driving is now a typical daily task. Creating a multi-modal human emotion dataset in driving tasks is an essential step in human emotion studies. we conducted three experiments to collect multimodal psychological, physiological and behavioural dataset for human emotions (PPB-Emo). In Experiment I, 27 participants were recruited, the in-depth interview method was employed to explore the driver’s viewpoints on driving scenarios that induce different emotions. For Experiment II, 409 participants were recruited, a questionnaire survey was conducted to obtain driving scenarios information that induces human drivers to produce specific emotions, and the results were used as the basis for selecting video-audio stimulus materials. In Experiment III, 40 participants were recruited, and the psychological data and physiological data, as well as their behavioural data were collected of all participants in 280 times driving tasks. The PPB-Emo dataset will largely support the analysis of human emotion in driving tasks. Moreover, The PPB-Emo dataset will also benefit human emotion research in other daily tasks

    A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving

    Get PDF
    As driving functions become increasingly automated, motorists run the risk of becoming cognitively removed from the driving process. Psychophysiological measures may provide added value not captured through behavioral or self-report measures alone. This paper provides a selective review of the psychophysiological measures that can be utilized to assess cognitive states in real-world driving environments. First, the importance of psychophysiological measures within the context of traffic safety is discussed. Next, the most commonly used physiology-based indices of cognitive states are considered as potential candidates relevant for driving research. These include: electroencephalography and event-related potentials, optical imaging, heart rate and heart rate variability, blood pressure, skin conductance, electromyography, thermal imaging, and pupillometry. For each of these measures, an overview is provided, followed by a discussion of the methods for measuring it in a driving context. Drawing from recent empirical driving and psychophysiology research, the relative strengths and limitations of each measure are discussed to highlight each measures' unique value. Challenges and recommendations for valid and reliable quantification from lab to (less predictable) real-world driving settings are considered. Finally, we discuss measures that may be better candidates for a near real-time assessment of motorists' cognitive states that can be utilized in applied settings outside the lab. This review synthesizes the literature on in-vehicle psychophysiological measures to advance the development of effective human-machine driving interfaces and driver support systems

    Wearable Mobile-Based Emotional Response-Monitoring System for Drivers

    No full text
    corecore