4,321 research outputs found

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Employing consumer electronic devices in physiological and emotional evaluation of common driving activities

    Get PDF
    It is important to equip future vehicles with an on-board system capable of tracking and analysing driver state in real-time in order to mitigate the risk of human error occurrence in manual or semi-autonomous driving. This study aims to provide some supporting evidence for adoption of consumer grade electronic devices in driver state monitoring. The study adopted repeated measure design and was performed in high- fidelity driving simulator. Total of 39 participants of mixed age and gender have taken part in the user trials. The mobile application was developed to demonstrate how a mobile device can act as a host for a driver state monitoring system, support connectivity, synchronisation, and storage of driver state related measures from multiple devices. The results of this study showed that multiple physiological measures, sourced from consumer grade electronic devices, can be used to successfully distinguish task complexities across common driving activities. For instance, galvanic skin response and some heart rate derivatives were found to be correlated to overall subjective workload ratings. Furthermore, emotions were captured and showed to be affected by extreme driving situations

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Evaluating a Personal Stress Monitoring System

    Get PDF
    Now-a-days, Life is generally much more stressful than in the past. Stress is the word that we use when we feel that we are overloaded mentally in our thoughts and wonder whether we can really cope with those placed upon us. Sometimes, stress gets us going and they are good for us but at other times, it could be the cause to undermine both our mental and physical health. The way we respond to a challenge can be considered as a kind of stress. Part of our response to a challenge is physiological and affects our own physical state. When we are faced with a challenge or a threat, our body releases some resources to protect us against them - either to get away as fast as we can, or to fight against them. This fight-or-flight response is our body\u27s sympathetic nervous system reacting to a stressful event. During this response, our body produces larger quantities of the chemicals such as cortisol, adrenaline and noradrenaline, which triggers a higher heart rate, heightened muscle preparedness, sweating, and alertness. All these factors help us to protect ourselves in a dangerous or challenging situation. But based on the frequency of stress facing by a person, these changes may affect his or her health negatively. In order to evaluate an individual\u27s stress, I worked on this thesis in developing a personal stress monitoring system to capture the stress undergoing by an individual in his or her daily life

    Technology-mediated Control: Case Examples and Research Directions for the Future of Organizational Control

    Get PDF
    This study explores the emerging topic of technology-mediated control (TMC), which refers to an organization’s using digital technologies to influence workers to behave in a manner consistent with organizational objectives. The popular press has discussed many mobile apps, digital sensors, software algorithms, and other technologies that support, or automate, managerial control processes. Building on the rich history of research on organizational and information systems (IS) control and on ubiquitous technology, we explore how TMC approaches have increasingly begun to replace traditional, face-to-face control relationships. In particular, we analyze four illustrative case examples (UPS, Uber, Rationalizer, and Humanyze) to propose a detailed research agenda for future study in this important new topic area

    Self-tracking modes: reflexive self-monitoring and data practices

    Get PDF
    The concept of ‘self-tracking’ (also referred to as life-logging, the quantified self, personal analytics and personal informatics) has recently begun to emerge in discussions of ways in which people can voluntarily monitor and record specific features of their lives, often using digital technologies. There is evidence that the personal data that are derived from individuals engaging in such reflexive self-monitoring are now beginning to be used by actors, agencies and organisations beyond the personal and privatised realm. Self-tracking rationales and sites are proliferating as part of a ‘function creep’ of the technology and ethos of self-tracking. The detail offered by these data on individuals and the growing commodification and commercial value of digital data have led government, managerial and commercial enterprises to explore ways of appropriating self-tracking for their own purposes. In some contexts people are encouraged, ‘nudged’, obliged or coerced into using digital devices to produce personal data which are then used by others. This paper examines these issues, outlining five modes of self-tracking that have emerged: private, communal, pushed, imposed and exploited. The analysis draws upon theoretical perspectives on concepts of selfhood, citizenship, biopolitics and data practices and assemblages in discussing the wider sociocultural implications of the emergence and development of these modes of self-tracking

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD

    A review of biophysiological and biochemical indicators of stress for connected and preventive healthcare

    Get PDF
    Stress is a known contributor to several life-threatening medical conditions and a risk factor for triggering acute cardiovascular events, as well as a root cause of several social problems. The burden of stress is increasing globally and, with that, is the interest in developing effective stress-monitoring solutions for preventive and connected health, particularly with the help of wearable sensing technologies. The recent development of miniaturized and flexible biosensors has enabled the development of connected wearable solutions to monitor stress and intervene in time to prevent the progression of stress-induced medical conditions. This paper presents a review of the literature on different physiological and chemical indicators of stress, which are commonly used for quantitative assessment of stress, and the associated sensing technologies
    corecore